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Chapter 1

Introduction

1.1 Motivation

The discrete-time Bayesian estimation problem may be generally described as the

problem of estimating a random signal of interest (also referred to as the “state”)

Xj, where j denotes the time index, from a sequence of random observations

(Z1, . . . , Zk). The cases where j < k, j = k and j > k correspond respectively to

the smoothing, filtering and prediction variants of the estimation problem.

The observations, also called measurements, are treated as random because

they are assumed to be corrupted by random errors, the so-called observation

noise. In this case, we generally cannot estimate the exact value of Xj and the

system composed by the state and the observations is called a partially observed

system. The estimated value x̂j will hence contain errors with respect to the true

value of the state Xj, which can be statistically quantified, for instance, by the

covariance matrix or the entropy.

Quantifying estimation errors, or in other words, quantifying the uncertainty

associated with the estimates, is an important problem for real-word applications,

particularly when there is the possibility that such errors are high. This includes

many special cases of the target tracking problem, including estimating the alti-

tude and slant range error of a constant-velocity target using 2D radars (see Aoki

[2010]), estimating sensor biases from targets of opportunity (see Syldatk et al.

[2012]), and identifying targets that separate after moving in close proximity (see

1



1. INTRODUCTION

Blom et al. [2008]). The last problem, plus the econometrics problem of stochas-

tic volatility estimation (Aihara et al. [2009]), are considered in this thesis. An

estimator that allows us to compute accurate measures of uncertainty is called a

statistically consistent estimator (see [Bar-Shalom et al., 2001, Section 5.4]).

In some practical problems, there is also the possibility of redirecting sensors,

or adjusting sensor properties, in order to reduce the estimation uncertainty. This

problem is called sensor management, a special case of the stochastic control

problem, where the feedback is directed to the observations, rather than to the

state. Needless to say, a good characterization of estimation uncertainty is a

prerequisite for good sensor management.

In summary, our problem of interest is how to efficiently characterize esti-

mation uncertainty, and how to reduce it using sensor management techniques.

To achieve these goals, we focus on Sequential Monte Carlo (SMC) methods,

also known as particle filters (PF). As numerical, nonlinear estimators, particle

filters do not rely on the principle of orthogonality ([Bar-Shalom et al., 2001, Sec-

tion 3.3]) and are hence, at least in theory, able to perform Bayesian estimation

in an approximately optimal manner even for systems with nonlinear structure

and non-Gaussian process and observation noises.

1.2 Overview of existing research for the prob-

lems considered in this thesis

In this section, we will present a brief summary of the problems considered in

this thesis, and the description of the state-of-the-art techniques available to deal

with them. A more in-depth discussion of these problems and techniques, as well

as proper literary reviews, will be presented in the corresponding chapters.

1.2.1 Online joint state and parameter estimation

In joint state and parameter estimation, for a partially observed system, part of

the quantities to be estimated are time-invariant (which we refer to as “param-

eter”) and the another part is time-variant (which we refer to as “state”). It is

2
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well-known that particle filters have difficulty dealing with such kind of problems,

due to the so-called PF degeneracy phenomenon.

In online joint state and parameter estimation, both parameter and state

estimates need to be produced as soon as a new measurement becomes avail-

able. For this class of problems, it is known that the particle filter degeneracy

phenomenon becomes unavoidable regardless of the number of particles used.

The usual approach for this problem is to modify the basic PF algorithm by at-

tributing artificial dynamics to the parameters, such that they are also treated

as time-varying states. This approach, however, leads to biases on the system

model, making statistically consistent estimation harder to achieve. One popular

algorithm based on this idea is the Liu and West Particle Filter (LWPF).

1.2.2 Multi-target tracking and labelling

The general Multi-Target Tracking (MTT) problem consists of estimating the

locations of multiple targets (or, stating in more general form, estimating the

states of multiple objects), where the number of targets itself may need to be

estimated (i.e. it may be unknown and possibly time-varying). A more complex

version of this problem is the Multi-Target Tracking and Labelling (MTTL),

where the targets also need to be individually identified; in other words, we

must assign a “label” to each estimated location, and ideally, this label should

be consistently associated (across multiple time steps) with the same real-world

target.

A challenging MTTL scenario is when targets move in close proximity for a

while, and afterwards separate. In this case, it is intuitively clear that there will

be uncertainly on labelling the individual targets, but how to mathematically

model this uncertainty is not yet satisfactorily answered in literature. Some

quantities have been proposed in the literature, but their physical interpretations

are unclear, and none of them apply to the general case where the number of

targets is unknown and/or time-varying. Disregarding the problem of finding an

appropriate uncertainty measure, the problem of labelling itself is another concern

as the use of particle filters to perform Bayesian labelling is known to lead to

underestimation of uncertainty, due to the particle filter degeneracy phenomenon.

3
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1.2.3 Information-driven sensor management

Sensor management is typically performed by choosing some control action that

optimizes a criterion related to estimation quality, for instance, minimizing the

determinant or trace of the covariance matrix of the state to be estimated. The so-

called “information-driven sensor management” consists of using measures from

information theory as sensor management criteria, like the Kullback-Leibler (KL)

and Rényi divergences.

Such criteria are attractive as they can be applied in a relatively straightfor-

ward manner to complex problems (like multi-target tracking and hybrid con-

tinuous/discrete estimation), and have shown promising experimental results for

some practical problems. However, the available theoretical arguments to justify

their use remain unclear or debatable. One such argument is the “near-universal

proxy” algorithm, which suggests that Rényi divergences can be used as substi-

tutes for arbitrary risk-based sensor management criteria.

1.3 Outline and contributions of this thesis

Chapter 2 reviews the theoretical basis of this work, including SMC methods,

Finite Set Statistics (FISST), Poisson Point Process (PPP) theory, parameter

estimation strategies and basic sensor management concepts;

Chapter 3 proposes two new solutions for the problem of online joint state

and parameter estimation, that addresses the limitations of state-of-the-art meth-

ods based on artificial dynamics. The proposed algorithms are novel implemen-

tations of the Rao-Blackwellized Marginal Particle Filter (RBMPF), a recently

proposed PF variant designed to counter degeneracy. These methods are general,

in the sense that they can be applied to nonlinear, non-Gaussian systems without

any particular structure;

Chapter 4 presents a mathematical formulation of the Bayesian MTTL prob-

lem, based on FISST, culminating in the definition of a number of useful statistics,

including the labelling probability, a measure of estimation uncertainty for this

problem. Additionally, we propose a new algorithm, the Labelling Uncertainty-

Aware Particle Filter (LUA-PF) filter, as a solution for the MTTL problem that

4
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avoids the particle filter degeneracy phenomenon;

Chapter 5 presents a theoretical and empirical analysis of information-driven

sensor management criteria, more specifically of previous arguments for (and

against) using the Kullback-Leibler (KL) and Rényi divergence as sensor man-

agement criteria. The analysis leads to the conclusion that there is little support

for the existing arguments for using the Rényi divergence, whereas there is some

basis for using the KL divergence due to its relationship with the Shannon en-

tropy.

5



Chapter 2

Mathematical background

2.1 Sequential Monte Carlo methods

As we mentioned in Section 1.1, SMC methods are techniques heavily emphasized

in this work. The most well-known SMC method is the Sequential Importance

Resampling (SIR) particle filter proposed by Gordon et al. [1993] and Kitagawa

[1993], which is also the basis of many other SMC methods. In this section, we

will look at the aspects of this technique relevant for our work, in particular, the

PF degeneracy phenomenon. However, we will first take a look at the Sequen-

tial Importance Sampling (SIS) PF, which will help us later to understand the

strengths and limitations of the SIR mechanism.

In addition, we also look at two PF variants that will be relevant later in this

thesis: the Rao-Blackwellized Particle Filter (RBPF) and the Marginal Particle

Filter (MPF).

2.1.1 The SIS particle filter

2.1.1.1 Derivation

We will review the derivation of the SIS particle filter for fully general stochastic

state-space models, i.e. without any Markov assumptions, as shown e.g. in

[de Freitas, 1999, Chapter 6]. Consider a stochastic process described by the

sequence (Xk, Zk), where Xk and Zk are random variables denoting the state and

6



2. MATHEMATICAL BACKGROUND

observation at time k, with realizations respectively given by xk and zk, Let Z
k

(with k as superscript, not subscript) denote all available observations until and

including time k (Zk = (z1, . . . , zk)). At time k, the statistical information about

the trajectory (X0, . . . , Xk) given Zk is summarized by the posterior probability

density function (pdf) p
(
x0, . . . , xk

∣
∣Zk

)
. According to the Bayes theorem, the

posterior is given by

p
(
x0, . . . , xk

∣
∣Zk

)
=

p
(
zk
∣
∣x0, . . . , xk, Z

k−1
)
p
(
xk

∣
∣x0, . . . , xk−1, Z

k−1
)

p (zk |Zk−1 )

× p
(
x0, . . . , xk−1

∣
∣Zk−1

)

= p(x0)
k∏

j=1

p (zj |x0, . . . , xj, Z
j−1 ) p (xj |x0, . . . , xj−1, Z

j−1 )

p (zj |Zj−1 )
.

(2.1)

In the filtering problem, one is interested in estimating some function g(Xk)

of the “current” state Xk. The expectation of this quantity, given the available

observations Zk, is given by

E
[
g(Xk)

∣
∣Zk

]
=

∫

. . .

∫

︸ ︷︷ ︸

k+1

g(xk)p
(
x0, . . . , xk

∣
∣Zk

)
dx0 . . . dxk

=

∫

. . .

∫

︸ ︷︷ ︸

k+1

(
k∏

j=1

p (zj |x0, . . . , xj , Z
j−1 ) p (xj |x0, . . . , xj−1, Z

j−1 )

p (zj |Zj−1 )

)

× p(x0)g(xk)dx0 . . . dxk

=

∫

. . .

∫

︸ ︷︷ ︸

k+1

(
k∏

j=1

p (zj |x0, . . . , xj , Z
j−1 ) p (xj |x0, . . . , xj−1, Z

j−1 )

p (zj |Zj−1 )

)

× p(x0)g(xk)

q (x0, . . . , xk |Zk )
q
(
x0, . . . , xk

∣
∣Zk

)
dx0 . . . dxk. (2.2)

where q
(
x0, . . . , xk

∣
∣Zk

)
is some pdf ofX0, . . . , Xk parametrized on Zk that we are

able to sample from. If we obtain NP independent, identically distributed (i.i.d.)

samples (x0(i), . . . , xk(i)), i = 1, . . . , NP , from this density, then according to the

7
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law of large numbers, expectation (2.2) can be approximated as

E
[
g(Xk)

∣
∣Zk

]
≈

NP∑

i=1

wk(i)g(xk(i)) (2.3)

where, for i = 1, . . . , NP

wk(i) =
1

NP

(
k∏

j=1

p (zj |x0(i), . . . , xj(i), Z
j−1 ) p (xj(i) |x0(i), . . . , xj−1(i), Z

j−1 )

p (zj |Zj−1 )

)

× p(x0(i))

q (x0(i), . . . , xk(i) |Zk )
. (2.4)

Implicitly, we make the approximation

p
(
x0, . . . , xk

∣
∣Zk

)
≈

NP∑

i=1

wk(i)δ(x0 − x0(i)) . . . δ(xk − xk(i)). (2.5)

where we refer to the samples (x0(i), . . . , xk(i)), i = 1, . . . , NP as the particles

and to wk(i), i = 1, . . . , NP as the particle weights. One interpretation of (2.5)

is that each particle represents a hypothesis on the trajectory (X0, . . . , Xk) with

an attached weight. Now, let us assume that q
(
x0, . . . , xk

∣
∣Zk

)
is structured as

follows:

q
(
x0, . . . , xk

∣
∣Zk

)
, p(x0)

k∏

j=1

q
(
xj

∣
∣x0, . . . , xj−1, Z

j
)

(2.6)

where q (xj |x0, . . . , xj−1, Z
j ) is some pdf of xj parametrized on (x0, . . . , xj−1), Z

j

that we are able to sample from, which we refer to as proposal density or impor-

tance sampling function. Observe that we can obtain each particle i = 1, . . . , NP

from q
(
x0, . . . , xk

∣
∣Zk

)
by means of sequential sampling, i.e. we first obtain a sam-

ple x0(i) from p(x0), then use it to obtain a sample x1(i) from q (x1 |x0(i), z1 ), and

so forth, until we obtain the complete sample (x0(i), . . . , xk(i)). In the particle

filter algorithm, we refer to this procedure as sequential importance sampling.

With q (xj |x0, . . . , xj−1, Z
j ) having the form (2.6), observe now that the ex-

8



2. MATHEMATICAL BACKGROUND

pression for wk(i) (2.4) can be rewritten as

wk(i) =
1

NP

(
k∏

j=1

p (zj |x0(i), . . . , xj(i), Z
j−1 ) p (xj(i) |x0(i), . . . , xj−1(i), Z

j−1 )

p (zj |Zj−1 ) q (xj(i) |x0(i), . . . , xj−1(i), Zj )

)

(2.7)

which can be easily written in recursive form, as

wj(i) ,
p (zj |x0(i), . . . , xj(i), Z

j−1 ) p (xj(i) |x0(i), . . . , xj−1(i), Z
j−1 )

p (zj |Zj−1 ) q (xj(i) |x0(i), . . . , xj−1(i), Zj )
wj−1(i)

(2.8)

for j = 1, . . . , k, and w0(i) , 1/NP .

Therefore, approximation (2.5) can be computed iteratively, at each time step

j, on the basis of each new observation zj . At each time step j, we sample xj(i),

i = 1, . . . , NP from the proposal density q (xj(i) |x0(i), . . . , xj−1(i), Z
j ), and we

calculate the weights wj(i), i = 1, . . . , NP according to (2.8). The resulting

iterative algorithm is called Sequential Importance Sampling Particle Filter (SIS

PF).

In order for (2.3) to be a valid approximation of the true expectation, we must

have
∑NP

i=1 wk(i) = 1. Hence, we do not need to compute the term p (zj |Zj−1 )

(that does not depend on i) explicitly. Instead, we can first compute the unnor-

malized particle weights by ignoring the term:

wj(i) =
p (zj |x0(i), . . . , xj(i), Z

j−1 ) p (xj(i) |x0(i), . . . , xj−1(i), Z
j−1 )

q (xj(i) |x0(i), . . . , xj−1(i), Zk )
wj−1(i)

(2.9)

and the particle weights themselves can be computed using the normalization

step wj(i) =
wj(i)

∑NP
j=1 wj(j)

.

2.1.1.2 SIS PF algorithm

Initialization:

1. For each particle i = 1, . . . , NP

9



2. MATHEMATICAL BACKGROUND

(a) Sample x0(i) ∼ p(x0)

(b) Make w0(i) =
1

NP

At every time step k = 1, 2, . . .:

1. For each particle i = 1, . . . , NP

(a) Perform importance sampling by making

xk(i) ∼ q
(

xk

∣
∣
∣x0(i), . . . , xk−1(i), Z

k
)

where q
(
xk
∣
∣x0, . . . , xk−1, Z

k
)
is a proposal density

(b) Calculate the unnormalized weight according to

wk(i) =
p
(
zk
∣
∣x0(i), . . . , xk(i), Z

k−1
)
p
(
xk(i)

∣
∣x0(i), . . . , xk−1(i), Z

k−1
)

q (xk(i) |x0(i), . . . , xk−1(i), Zk )

× wk−1(i)

2. Normalize the particle weights according to

wk(i) =
wk(i)

∑NP

j=1wk(j)
, i = 1, . . . , NP

2.1.1.3 SIS PF degeneracy

The SIS PF mechanism relies on the law of large numbers, and therefore, approx-

imation (2.3) is guaranteed to asymptotically converge to the true expectation.

However, this convergence property does not guarantee that the necessary number

of particles to obtain accurate estimates remains constant with time.

In practice, the algorithm is known to be ineffective except when the max-

imum considered time step k, if any, is very small. The reason is that as

shown in [Doucet et al., 2001, Proposition 4], the variance of the weights (or

more precisely, its expectation taken over all observations (Z1, . . . , Zk)) increases

with time. Eventually, after a number of iterations, one of the weights will be-

come 1, while all the remaining weights will become zero. This situation, where

p
(
x0, . . . , xk

∣
∣Zk

)
ends up being effectively represented by a single sample, is

referred to as degeneracy.

10



2. MATHEMATICAL BACKGROUND

We might be able to postpone the time where degeneracy occurs by reducing

the variance of the weights. The proposal density that minimizes the expectation

of this variance is called the optimal proposal density, which is, as shown in

[Doucet et al., 2001, Proposition 3], given by

q
(
xk

∣
∣x0, . . . , xk−1, Z

k
)
= p

(
xk

∣
∣x0, . . . , xk−1, Z

k
)

(2.10)

Unfortunately, sampling directly from p
(
xk

∣
∣x0, . . . , xk−1, Z

k
)
is often diffi-

cult, and even if possible, it would at most postpone degeneracy, meaning that

the SIS PF would still become ineffective at some point (unless, naturally, if the

maximum k is sufficiently small). This behavior has led to the development of

the SIR PF.

2.1.2 The SIR particle filter

2.1.2.1 Derivation

Consider the SIS PF algorithm described in Section 2.1.1.2. We would like to

prevent the variance of the particle weights from increasing at each time step.

This can be accomplished by means of a resampling mechanism.

Let us take a look at the approximation (2.3) of E
[
g(Xk)

∣
∣Zk

]
. If we take

again NP samples of (X0, . . . , Xk) according to the probability mass function

(pmf) with probabilities (wk(i))
NP

i=1, we could approximate “again” the conditional

expectation as

E
[
g(Xk)

∣
∣Zk

]
≈ 1

NP

NP∑

i=1

g(x̃k(i)) (2.11)

where (x̃0(i), . . . , x̃k(i))
NP

i=1 is the set of samples obtained by the resampling pro-

cedure. By making xk(i) := x̃k(i) and wk(i) := 1/NP for i = 1, . . . , NP , we obtain

a new set of particles with equal weights, that we can use in the next iteration

of the algorithm. The modified particle filter algorithm is then called Sequential

Importance Resampling Particle Filter (SIR PF).

11
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Note that, at the next iteration k + 1, when we sample from

q
(
xk+1

∣
∣x0, . . . , xk, Z

k+1
)
,

the new samples (x0(i), . . . , xk+1(i))
NP

i=1 cannot be assumed as independent, as

some of them will share common past trajectories (x0, . . . , xk). Therefore, conver-

gence in expectation due to the law of large numbers is not guaranteed. However,

asymptotic convergence results for the SIR PF, including convergence in distri-

bution, in mean-square error, and in expectation (under different assumptions)

have been provided by Crisan and Doucet [2002] and Hu et al. [2008].

Resampling has also some practical drawbacks. As observed by Liu and Chen

[1998], in case all particles have already nearly all equal weights, resampling will

merely reduce the number of distinct particles, hence impoverishing the particle

approximation. Liu and Chen [1998]’s proposed solution is to perform resampling

only after every couple of steps, when the variance of the weights exceeds some

heuristic threshold. Another solution is to use the systematic resampling (also

known as “stratified sampling”) scheme described by Kitagawa [1996], which

guarantees that no particle is eliminated in case all particles have already equal

weights. Alternatively, systematic resampling and threshold-based resampling

can be combined, as suggested by Arulampalam et al. [2002], although they do

not explicitly state the advantages of this approach.

Note that systematic resampling has other advantages. Compared to other

resampling schemes, it has low computational cost (see Hol et al. [2006]) and

it results in minimum variance in the selection of samples ([de Freitas, 1999,

Chapter 6]). For the reader’s information, in all our SIR PF implementations,

we use systematic resampling at every time step. The systematic resampling

algorithm is presented in Section 2.1.2.3.

The computational complexity of the SIS PF is O(NP ). According to Hol

et al. [2006], all commonly used resampling schemes can also be implemented

with O(NP ) complexity; therefore, we can say that the SIR PF as a whole has

O(NP ) complexity.
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2.1.2.2 SIR PF algorithm

Initialization:

1. For each particle i = 1, . . . , NP

(a) Sample x0(i) ∼ p(x0)

(b) Make w0(i) =
1

NP

At every time step k = 1, 2, . . .:

1. For each particle i = 1, . . . , NP

(a) Perform importance sampling by making

xk(i) ∼ q
(

xk

∣
∣
∣x0(i), . . . , xk−1(i), Z

k
)

where q
(
xk
∣
∣x0, . . . , xk−1, Z

k
)
is a proposal density

(b) Calculate the unnormalized weight according to

wk(i) =
p
(
zk
∣
∣x0(i), . . . , xk(i), Z

k−1
)
p
(
xk(i)

∣
∣x0(i), . . . , xk−1(i), Z

k−1
)

q (xk(i) |x0(i), . . . , xk−1(i), Zk )

× wk−1(i)

2. Normalize the particle weights according to

wk(i) =
wk(i)

∑NP

j=1wk(j)
, i = 1, . . . , NP

3. Perform resampling by sampling NP indexes
(
j̃(i)

)NP

i=1
according to the pmf

(wk(j))
NP

j=1 and afterwards making

(x0(i), . . . , xk(i)) :=
(
x0
(
j̃(i)

)
, . . . , xk

(
j̃(i)

))

wk(i) :=
1

NP
, i = 1, . . . , NP

2.1.2.3 Systematic resampling algorithm for a time step k

1. Generate a random number u(1) ∼ U(0, 1/NP )

2. Make F (1) := wk(1)

13
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3. For each particle i = 2, . . . , NP , make F (i) := F (i − 1) + wk(i), such that F (·)
corresponds to the cumulative distribution function (cdf) of the particles

4. Make j := 1

5. For each particle i = 1, . . . , NP

(a) Make u(i) := u(1) + (i− 1)/NP

(b) While u(i) > F (j), make j := j + 1

(c) Make j̃(i) := j

2.1.2.4 SIR PF degeneracy

Although the SIR PF has been successfully employed in various estimation prob-

lems, it is known to lead to poor performance for certain classes of problems,

including: joint state and parameter estimation (see Andrieu and Doucet [2002];

Kantas et al. [2009]), multi-modal estimation (Vermaak et al. [2003]), classifica-

tion (Blom and Bloem [2004]), smoothing (Briers et al. [2010]) and track labelling

(Boers et al. [2010]). This also due to a type of degeneracy, which is however dif-

ferent in nature from the degeneracy that affects the SIS PF, and has different

consequences.

Particle filters provide, in theory, an approximation of p
(
x0, . . . , xk

∣
∣Zk

)
, the

posterior for the entire state trajectory. But since the dimensionality of the state

trajectory increases with time, it is intuitive that no numerical approximation of

the trajectory posterior based on a fixed number of samples could be effective –

this is precisely the reason that the SIS PF is doomed to fail when time advances

enough.

The SIR PF attempts to counter the problem with time-increasing dimension

by progressively sacrificing information about past states, such that it is at least

able to satisfactorily estimate the current state Xk. In other words, as stated in

Doucet and Johansen [2011], the resampling mechanism causes the marginal den-

sity of the current state p
(
xk

∣
∣Zk

)
to be better approximated than the marginal

densities of any “earlier” state, of the form p
(
xj

∣
∣Zk

)
, j ∈ [0, k).

This mechanism is illustrated in Fig. 2.1. In this example, at time k = 1,

before the resampling step, there are NP = 6 particles and hence 6 distinct
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x_0(1) x_0(2) x_0(3) x_0(4) x_0(5) x_0(6)

x_1(1) x_1(2) x_1(3) x_1(4) x_1(5) x_1(6)

x_0(2) x_0(3) x_0(5) x_0(6)

x_1(2) x_1(3) x_1(5) x_1(6)

x_2(1) x_2(2) x_2(3) x_2(4) x_2(5) x_2(6)

x_0(2) x_0(5)

x_1(2) x_1(5)

x_2(1) x_2(2) x_2(5)

x_3(1) x_3(2) x_3(3) x_3(4) x_3(5) x_3(6)

k = 1

k = 2

k = 3

Figure 2.1: Illustration of a running SIR PF, showing the particles produced at
each time step, after importance sampling and before resampling

hypotheses on the trajectory (X0, X1). After the resampling step, only 4 distinct

hypotheses remain. Importance sampling at time k = 2 generates again 6 distinct

trajectories, but all of them contain one of the previous 4 distinct hypotheses

for the (X0, X1) part of the trajectory. After another resampling, followed by

importance sampling at time k = 3, only two distinct hypohteses for (X0, X1),

plus three distinct hypotheses for X2, remain.

After a number of time steps, the statistical information about the past tra-

jectory (X0, X1) will collapse into a single hypothesis. Eventually the same will

happen with X2, X3 and so on. It is easy to see that this phenomenon will occur

regardless the number of particles – after all, the number of particles representing

the trajectory (X0, . . . , Xj), j < k, can only decrease when k increases. In other

words, the SIR PF suffers from degeneracy on estimating past states, i.e. on

performing smoothing.

This behavior may look acceptable if we are interested only in filtering, i.e.

in estimating a function of the current state g(Xk). The problem is that, if for
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some j < k, the statistical information about all past states including and until

time j is represented by a single hypothesis (say
(
x∗
0, . . . , x

∗
j

)
), then in practice,

the particle approximation of the posterior p
(
x0, . . . , xk

∣
∣Zk

)
can be considered

biased towards

p
(
xj+1, . . . , xk

∣
∣x∗

0, . . . , x
∗
j , Z

k
)

(2.12)

and therefore, unless filtering is indifferent to the aforementioned past hypothesis,

i.e.

E
[
g(Xk)

∣
∣Zk

]
≈ E

[
g(Xk)

∣
∣x∗

0, . . . , x
∗
j , Z

k
]
, (2.13)

filtering is also going to be affected by degeneracy.

According to Crisan and Doucet [2002], a number of “mixing” properties

ensures that a particular model will not suffer adverse consequences from de-

generacy, more precisely, that the expected estimation errors have upper bounds

that do not increase with time. As mentioned in the same work, these properties

are highly restrictive, and although sufficient, they are perhaps not necessary. In

practice, SIR particle filters have been successfully employed in several practical

problems, which mostly do not have those mixing properties (e.g. Doucet et al.

[2001]; Gustafsson and Saha [2010]; Kreucher et al. [2005]).

A common situation is that the “indifference property” (2.13) will hold only if

the difference k−j is large enough, i.e. if degeneracy takes a sufficiently long time

to occur. In this case, we may attempt to “slow down” degeneracy to counter its

adverse effects. This can be accomplished by increasing the number of particles or

by decreasing the variance of the weights (which intuitively results in less distinct

particles disappearing during resampling).

2.1.3 Particle filters applied to Partially Observed First

Order Markov (POM1) processes

When designing discrete time models for describing real-world processes, a com-

mon assumption is that the behavior of the sequence of states and observations

16



2. MATHEMATICAL BACKGROUND

can be summarized by

Xk+1 = fk (Xk,Mk) (2.14)

Zk = hk (Xk, Nk) (2.15)

X0 ∼ p(x0) (2.16)

where p(x0) is referred to as the prior pdf, fk and hk are arbitrary functions,

and (Mk)
∞
k=0 and (Nk)

∞
k=1 are all mutually independent random variables, also

independent from p(x0). The stochastic process Mk is called the process noise

and Nk the measurement noise. A particular case of this model is the linear-

Gaussian model, where fk and hk have the form:

fk (Xk,Mk) = FkXk +Mk (2.17)

hk (Xk, Nk) = HkXk +Nk (2.18)

where Fk and Hk are linear transformations, and Mk and Nk are distributed

according to

Mk ∼ N(uk, Qk)

Nk ∼ N(vk, Rk) (2.19)

where uk and vk are the means of the noise terms, andQk andRk their covariances.

In Bayesian filtering, the density p
(
zk
∣
∣x0, . . . , xk, Z

k−1
)
is commonly called

the likelihood function, and the density p
(
xk

∣
∣x0, . . . , xk−1, Z

k−1
)
the state transi-

tion density. If the process/observation model is described by (2.14) and (2.15),

these densities can be simplified to

p
(
zk
∣
∣x0, . . . , xk, Z

k−1
)
= p (zk |xk ) , (2.20)

p
(
xk

∣
∣x0, . . . , xk−1, Z

k−1
)
= p (xk |xk−1 ) (2.21)

i.e. the observation at time k, conditioned on the state at time k is independent

of previous states and observations, and the state at time k, conditioned on the

state at time k − 1, is independent of states older than k − 1 and of previous
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observations. A system with properties (2.20) and (2.21) is called a Partially

Observed First Order Markov, or Partially Observed Markov-1 (POM1), process.

The main disadvantage of POM1 processes lies in the fact that real-world

processes are more accurately modeled in continuous time, rather than in discrete

time. As remarked by Gustafsson and Saha [2010], deriving a discrete time model

from a continuous time model does not result in a model of the form (2.14), (2.15),

unless unphysical assumptions, such as treating the process noise Mk as piecewise

constant between two time steps, are made.

As we have seen in Section 2.1.1.3, the optimal proposal density is given by

q
(
xk

∣
∣x0, . . . , xk−1, Z

k
)
= p

(
xk

∣
∣x0, . . . , xk−1, Z

k
)

and in the case of POM1 processes, observe that

p
(
xk

∣
∣x0, . . . , xk−1, Z

k
)
=

p
(
zk
∣
∣x0, . . . , xk, Z

k−1
)
p
(
xk

∣
∣x0, . . . , xk−1, Z

k−1
)

p (zk |x0, . . . , xk−1, Zk−1 )

=
p (zk |xk ) p (xk |xk−1 )

p (zk |x0, . . . , xk−1, Zk−1 )

=
p (zk |xk ) p (xk |xk−1 ) p (xk |xk−1, zk )

p (zk |x0, . . . , xk−1, Zk−1 ) p (xk |xk−1, zk )

=
p (zk |xk ) p (xk |xk−1 ) p (xk |xk−1, zk ) p (zk |xk−1 )

p (zk |x0, . . . , xk−1, Zk−1 ) p (zk |xk, xk−1 ) p (xk |xk−1 )

=
p (zk |xk ) p (xk |xk−1, zk ) p (zk |xk−1 )

p (zk |x0, . . . , xk−1, Zk−1 ) p (zk |xk )

=
p (xk |xk−1, zk ) p (zk |xk−1 )

p (zk |x0, . . . , xk−1, Zk−1 )
(2.22)

and by noticing that, for purposes of importance sampling, terms p (zk |xk−1 )

and p
(
zk
∣
∣x0, . . . , xk−1, Z

k−1
)
are irrelevant (as they do not depend on xk), the

optimal PF proposal density for POM1 processes is given by

q
(
xk

∣
∣x0, . . . , xk−1, Z

k
)
= q (xk |xk−1, zk )

= p (xk |xk−1, zk ) . (2.23)

For many problems, sampling directly from p (xk |xk−1, zk ) is not possible.
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A popular alternative is instead to sample from the state transition density

p (xk |xk−1 ), leading to a higher variance of the weights. Since sampling from

the state transition density disregards the last observation zk, it is commonly

referred to in literature as blind importance sampling.

2.1.4 The Rao-Blackwellized Particle Filter (RBPF)

2.1.4.1 Mechanism

As we mentioned in Section 2.1.4, a low variance of weights is desirable to slow

down degeneracy. For certain models, one way of achieving it is through the Rao-

Blackwellization technique presented in Andrieu and Doucet [2002]. Consider a

stochastic process with state vector of the form Xk =
[
ST
k , T

T
k

]T
, with realizations

denoted by xk =
[
sTk , t

T
k

]T
, i.e. Sk and Tk are “sub-states”. Rao-Blackwellization

consists of replacing the SMC mechanism by two parallel interacting estimators :

part of the state Xk (say, Sk) is estimated using a SMC filter (a PF or one

of its variants), and the another part (say, Tk) is estimated using a non-SMC

method (typically an analytical method, like a Kalman filter). More specifically,

the RBPF attempts to approximate the density

p
(
xk, s0, . . . , sk−1

∣
∣Zk

)
= p

(
s0, . . . , sk, tk

∣
∣Zk

)

= p
(
s0, . . . , sk

∣
∣Zk

)
p
(
tk
∣
∣s0, . . . , sk, Z

k
)

where p
(
s0, . . . , sk

∣
∣Zk

)
is calculated using an adapted PF and p

(
tk
∣
∣s0, . . . , sk, Z

k
)

is calculated using a non-SMC filter. Since the PF is applied to the marginal

p
(
s0, . . . , sk

∣
∣Zk

)
of p

(
xk, s0, . . . , sk−1

∣
∣Zk

)
, the RBPF is also called marginalized

particle filter. The resulting approximated pdf is then given by

p
(
s0, . . . , sk, tk

∣
∣Zk

)
≈

NP∑

i=1

wk(i)

(
k∏

j=0

δ(sj − sj(i))

)

p
(
tk
∣
∣s0(i), . . . , sk(i), Z

k
)

(2.24)

where (s0(i), . . . , sk(i))
NP

i=1 denote the particles states and (wk(i))
NP

i=1 the parti-

cle weights, with each particle being a weighted hypothesis on the trajectory
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(S0, . . . , Sk). Naturally, approximation (2.24) is only useful if we have means of

calculating p
(
tk
∣
∣s0, . . . , sk, Z

k
)
without resorting to SMC methods. One such

situation is of a POM1 system which has the structure given by

Sk+1 = f s
k (Sk,M

s
k) (2.25)

Tk+1 = F t
k(Sk+1)Tk +M t

k(Sk+1) (2.26)

Zk = Hk(Sk)Tk +Nk(Sk) (2.27)

where f s
k is a function, M s

k is a random variable, and for fixed arguments (Sk+1 =

sk+1, Sk = sk), F
t
k(sk+1) and Hk(sk) are linear transformations, and M t

k(sk+1)

and Nk(sk) have Gaussian distribution, i.e. they can be written as

M t
k(sk+1) ∼ N

(
ut
k(sk+1), Q

t
k(sk+1)

)
(2.28)

Nk(sk) ∼ N (vk(sk), Rk(sk)) . (2.29)

We also assume (M s
k)

∞
k=0, (M

t
k(sk+1))

∞
k=0 and (Nk(sk))

∞
k=1 to be all mutually

independent and independent from p(x0). For this model, it is possible to show

that assuming that p (t0 |s0 ) is Gaussian, we have

p
(
tk
∣
∣s0, . . . , sk, Z

k
)
= N

(
tk; t̂k, P

t
k

)
(2.30)

where t̂k and P t
k depend both on s0, . . . , sk, and can be recursively calculated

(from t̂k−1, P
t
k−1, sk and zk) using a Kalman filter.

2.1.4.2 RBPF algorithm

For illustrative purposes, we present the RBPF algorithm for the structured model

given by (2.25)–(2.27). Applications of the RBPF to more general structured

system models can be found in Schön et al. [2005].

Initialization:

1. For each particle i = 1, . . . , NP

(a) Sample s0(i) ∼ p(s0)

(b) Initialize t̂0(i), P
t
0(i) (respectively the mean and covariance of p (t0 |s0(i)))
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(c) Make w0(i) =
1

NP

At every time step k = 1, 2, . . .:

1. For each particle i = 1, . . . , NP

(a) Perform importance sampling by making

sk(i) ∼ q
(

sk

∣
∣
∣s0(i), . . . , sk−1(i), Z

k
)

where q
(
sk
∣
∣s0, . . . , sk−1, Z

k
)
is a proposal density

(b) Perform the Kalman filter steps

t̂k|k−1(i) = F t
k−1(sk(i))t̂k−1(i) + utk−1(sk(i))

P t
k|k−1(i) = F t

k−1(sk(i))P
t
k−1(i)F

t
k−1(sk(i))

T +Qt
k−1(sk(i))

ẑk|k−1(i) = Hk(sk(i))t̂k|k−1(i) + vk(sk(i))

Vk|k−1(i) = Hk(sk(i))P
t
k|k−1(i)Hk(sk(i))

T +Rk(sk(i))

Kk(i) = P t
k|k−1(i)Hk(sk(i))

TVk|k−1(i)
−1

t̂k(i) = t̂k|k−1(i) +Kk(i)
(
zk − ẑk|k−1(i)

)

P t
k(i) = P t

k|k−1(i)−Kk(i)Hk(sk(i))P
t
k|k−1(i)

(c) Calculate the unnormalized weight according to

wk(i) =
N
(
zk; ẑk|k−1, Vk|k−1

)
p (sk(i) |sk−1(i))

q (sk(i) |s0(i), . . . , sk−1(i), Zk )
wk−1(i)

2. Normalize the particle weights according to

wk(i) =
wk(i)

∑NP

j=1wk(j)
, i = 1, . . . , NP

3. Perform resampling by sampling NP indexes
(
j̃(i)

)NP

i=1
according to the pmf

(wk(j))
NP

j=1 and afterwards making

(
s0(i), . . . , sk(i), t̂k(i), P

t
k(i)

)
:=
(
s0
(
j̃(i)

)
, . . . , sk

(
j̃(i)

)
, t̂k
(
j̃(i)

)
, P t

k

(
j̃(i)

))

wk(i) :=
1

NP
, i = 1, . . . , NP

21



2. MATHEMATICAL BACKGROUND

2.1.4.3 Benefits and drawbacks

As shown in Andrieu and Doucet [2002], Rao-Blackwellization results in a reduc-

tion of the variance of the weights. This result is intuitive, as we are effectively

estimating at least part of the state (or more precisely, its conditional density

resulting from the factorization of the posterior density) using an exact Bayes

estimator (in the case of the algorithm in Section 2.1.4.2, a Kalman filter), rather

than a Monte Carlo-based approximation.

Although Rao-Blackwellization requires extra processing steps, it also reduces

the dimensionality of the state that needs to be estimated using a particle filter,

hence allowing us to use smaller numbers of particles. For a given performance

standard, the RBPF will typically have lower computational cost than the SIR

PF applied to the entire state Xk =
[
ST
k , T

T
k

]T
.

Therefore, the only significant “drawback” of the RBPF is that it requires

the system model to be structured in some manner, typically having some linear-

Gaussian properties or containing discrete variables, such that p
(
tk
∣
∣s0, . . . , sk, Z

k
)

can be computed analytically. If that is not the case, additional analytical or nu-

merical approximations (such as using an Extended Kalman Filter instead of a

Kalman filter) will be necessary for Rao-Blackwellization, which may naturally

have a negative impact on performance.

2.1.5 The Marginal Particle Filter (MPF)

2.1.5.1 Mechanism

In a SIR PF, a particle i at time k is given by (x0(i), . . . , xk(i)), i.e. it is a hypoth-

esis on the entire trajectory, since according to the sequential sampling mecha-

nism, xk(i) is sampled assuming the entire past trajectory (x0(i), . . . , xk−1(i)) as

the “true” past trajectory. As we have seen in Section 2.1.2.4, such behavior

can be detrimental to performance, as the degeneracy phenomenon progressively

reduces the diversity of past trajectories.

One may then have the following idea: to derive a Monte-Carlo based algo-

rithm where each particle represents only the current state Xk, with each particle

xk(i) being drawn without assuming any particular value for past states. Instead,
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each of the particles is drawn assuming only the posterior approximation obtained

in the previous iteration. The result from this idea is the Marginal Particle Fil-

ter (MPF) algorithm presented by Klaas et al. [2005]. The algorithm has this

name because it attempts to compute only the density p
(
xk

∣
∣Zk

)
obtained by

the marginalization of p
(
x0, . . . , xk

∣
∣Zk

)
. It should not be confused with the

Marginalized PF (which, as we mentioned, is just another name for the RBPF).

To derive the MPF, consider again that we would like to estimate some func-

tion g(Xk) of the “current” state Xk. For the sake of simplicity, we will also

assume a POM1 process. The expectation of this quantity, given the available

observations Zk, can be expressed as

E
[
g(Xk)

∣
∣Zk

]
=

∫

g(xk)p
(
xk

∣
∣Zk

)
dxk

=

∫

g(xk)
p (zk |xk )

∫
p (xk |xk−1 ) p

(
xk−1

∣
∣Zk−1

)
dxk−1

p (zk |Zk−1 )
dxk.

(2.31)

Assuming that p
(
xk−1

∣
∣Zk−1

)
is approximated by a set of particles

(xk−1(j), wk−1(j))
NP

j=1

(presumably generated during the previous iteration of the algorithm), (2.31) can

be approximated as

E
[
g(Xk)

∣
∣Zk

]

≈
∫

g(xk)
p (zk |xk )

∑NP

j=1 wk−1(j)p (xk |xk−1(j))

p (zk |Zk−1 )
dxk

=

∫

q
(
xk

∣
∣Zk

)
g(xk)

p (zk |xk )
∑NP

j=1 wk−1(j)p (xk |xk−1(j))

p (zk |Zk−1 ) q (xk |Zk )
dxk (2.32)

where q
(
xk

∣
∣Zk

)
is a proposal density parametrized on the entire sequence of

observations Zk. By drawing NP samples from q
(
xk

∣
∣Zk

)
, we obtain the approx-
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imation

E
[
g(Xk)

∣
∣Zk

]
≈

NP∑

i=1

wk(i)g(xk(i)) (2.33)

where

wk(i) =
p (zk |xk(i))

∑NP

j=1 wk−1(j)p (xk(i) |xk−1(j))

NPp (zk |Zk−1 ) q (xk(i) |Zk )
(2.34)

where the term NPp
(
zk
∣
∣Zk−1

)
does not depend on the sample and hence does

not need to be calculated explicitly, as in the SIR/SIS PFs. Consequently, the

current state posterior is approximated as

p
(
xk

∣
∣Zk

)
≈

NP∑

i=1

wk(i)δ(xk − xk(i)). (2.35)

Note that the MPF does not have a resampling step. However, sampling from

the proposal density may involve a step similar to resampling. This is because

a convenient form for the proposal density q
(
xk

∣
∣Zk

)
(in the sense that it takes

advantage of the particle approximation of p
(
xk−1

∣
∣Zk−1

)
) is

q
(
xk

∣
∣Zk

)
=

NP∑

j=1

λk(j)q(xk|xk−1(j), zk) (2.36)

where
∑NP

j=1 λk(j) = 1, and λk(j) may depend on zk, xk−1(j) and wj−1(j). In

order to obtain a new set of particles by sampling from (2.36), we can use two

steps:

1. Use a resampling algorithm (such as the systematic resampling scheme from

Section 2.1.2.3) to obtain samples x̃k−1(i), i = 1, . . . , NP of Xk−1 from the

point-mass distribution with probabilities (λk(j))
NP

j=1;

2. Sample xk(i), i = 1, . . . , NP according to q(xk|x̃k−1(i), zk).

The optimal proposal density of the MPF is not mentioned in Klaas et al.

[2005], but for the interested reader, we have derived it and present it in Appendix
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A.

2.1.5.2 MPF algorithm

We present below the MPF for POM1 processes. The algorithm can be easily

extended to more general processes.

Initialization:

1. For each particle i = 1, . . . , NP

(a) Sample x0(i) ∼ p(x0)

(b) Make w0(i) =
1

NP

At every time step k = 1, 2, . . .:

1. For each particle i = 1, . . . , NP

(a) Perform importance sampling for the state vector by making

xk(i) ∼ q
(

xk

∣
∣
∣Zk

)

where q
(
xk
∣
∣Zk

)
is a proposal density:

(b) Calculate the unnormalized weight according to

wk(i) =
p(zk|xk(i))

∑NP

j=1wk−1(j)p(xk(i)|xk−1(j))

q (xk(i) |Zk )

2. Normalize the particle weights according to

wk(i) =
wk(i)

∑NP

j=1wk(j)
, i = 1, . . . , NP

2.1.5.3 Benefits and drawbacks

The drawback of the MPF is evident, when one notes that each particle weight

is calculated using all particles, rather than a single particle. This causes the

algorithm to have an asymptotic complexity of O(N2
P ) (holding all else constant)

instead of O(NP ) as in SIR PF. However, as shown in Klaas et al. [2005], using

all particles to calculate each weight also has a “smoothing” effect on the weights,

leading to a smaller, or at least equal, variance.
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It may be tempting, for the sake of ease of implementation, to use a proposal

density that disregards the last measurement zk. As in the SIR PF, such density

is called a “blind proposal density”:

q
(
xk

∣
∣Zk

)
= p(xk|Zk−1) ≈

NP∑

j=1

wk−1(j)p(xk(i)|xk−1(j)). (2.37)

The problem is that as shown in Klaas et al. [2005], using (2.37) will result in

the MPF being mathematically equivalent to the SIR PF with “blind proposal

density”. Therefore, using a MPF with a blind proposal density does not provide

any benefit in terms of reduction of variance; in fact, it also does not increase

the computational complexity as the term
∑

j=1wk−1(j)p(xk(i)|xk−1(j)) will be

canceled in the calculation of the weight.

2.2 Joint state and parameter estimation

2.2.1 Mathematical formulation

In the parameter estimation problem (or more specifically, the joint state and pa-

rameter estimation problem), the system is a partially observed process consisting

of (Sk, θ, Zk), where k is the time index, Sk is a random vector corresponding to

the time-varying state (with the corresponding realization denoted by sk), θ is a

vector corresponding to the unknown parameter, and Zk is again a random vec-

tor corresponding to the observation process (with the corresponding realization

denoted by zk). Our goal is to obtain estimates θ̂ and ŝk respectively of θ and

Sk, given all available observations Zk = (z1, . . . , zk).

This process may also be modeled as a POM1 process, described as

Sk+1 = fk (Sk, θ,Mk)

Zk = hk (Sk, θ, Nk)

S0 ∼ p(s0) (2.38)

where fk and hk are arbitrary functions, and (Mk)
∞
k=0 and (Nk)

∞
k=1 are all mutually
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independent random variables, also independent from p(s0).

Alternatively, the unknown parameter may also be modeled as a random

vector Θ (with realizations given by θ). In this case, for a POM1 process, we

describe the system by

Sk+1 = fk (Sk,Θ,Mk)

Zk = hk (Sk,Θ, Nk)
[

S0

Θ

]

∼ p(s0, θ) (2.39)

where (Mk)
∞
k=0 and (Nk)

∞
k=1 are also independent from p(s0, θ).

In practice, joint state and parameter estimation practical problems can be

divided into two major groups:

1. In offline estimation problems, the parameter estimate θ̂ needs to be

produced only after a finite sequence of measurements Zkmax is available.

There are no hard constraints on the processing time to obtain this estimate,

although computational efficiency is often desirable. The estimate θ̂ may

subsequently be assumed to be the “true” value of θ and used in pure state

estimation problems (i.e. where only Sk is estimated);

2. In online estimation problems, parameter and state estimates need to

be produced at recurring times, for instance, as soon as new measurements

become available. Hence, there are hard constraints on the processing time,

and estimation is typically implemented using some sort of recursion. It is

also convenient to write each parameter estimate as θ̂k, indicating that the

estimate uses the observations available until and including time k. Online

joint state and parameter estimation generally assumes no upper bound on

the length of the sequence Zk, which as we will see in Chapter 3, causes the

problem to be tricky to solve using SMC methods (due to the degeneracy

phenomenon).
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2.2.2 Parameter estimation strategies

We look now at the three main strategies used for joint state and parameter

estimation. Although all of them are suitable for offline and online estimation

problems, we will focus on online estimation problems (and hence write the pa-

rameter estimate as θ̂k).

2.2.2.1 Maximum Likelihood approach

The first strategy is the Maximum Likelihood (ML) approach, that treats the

parameters as unknown, deterministic variables (i.e. we consider the model given

by (2.38)), estimated using

θ̂k = arg sup
θ

p
(
Zk
∣
∣ θ
)
. (2.40)

An example of nonlinear parameter estimation algorithm based on the ML

strategy is the Expected Maximization (EM) algorithm (Dempster et al. [1977])

combined with SMC smoothing, used for instance in Olsson et al. [2008]; Schön

et al. [2011].

The estimate θ̂k is afterwards treated as the true value of the parameter for

the purpose of estimating the state Sk. Hence, in practice, the estimate ŝk (as

well as other statistics of interest, such as the covariance of Sk) will based on

the conditional density p
(

sk

∣
∣
∣θ̂, Zk

)

. The estimate ŝk may be, for instance, the

MAP estimate:

ŝk = arg sup
sk

p
(

sk

∣
∣
∣θ̂k, Z

k
)

(2.41)

or, alternatively, the MMSE estimate:

ŝk =

∫

skp
(

sk

∣
∣
∣θ̂k, Z

k
)

dsk. (2.42)
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2.2.2.2 Decoupled Bayesian approach

As mentioned in Syldatk et al. [2012], in case of low parameter identifiability (i.e.

when the sequence of measurements Zk may not be enough to obtain an accurate

estimate θ̂), estimation can be improved by incorporation prior information about

the parameter θ, if any. Doing so corresponds to the Bayesian strategy, where

parameter vector is treated as a random variable, such that we consider the model

given by (2.39). Estimation of states and parameters, in the Bayesian approach,

can be either coupled or decoupled.

The decoupled Bayesian strategy basically consists of modifying the ML strat-

egy to take the parameter prior information p(θ) into account, but still treating

parameter and state estimation as decoupled problems. In this approach, the pa-

rameter vector is treated as a random variable (such that we consider the model

given by (2.39)), and the estimate θ̂ is obtained as

θ̂ = arg sup
θ

p
(
θ|Zk

)

= arg sup
θ

p
(
Zk|θ

)
p(θ) (2.43)

and we then replace Θ with θ̂ in order to estimate Sk, as in the ML approach. The

decoupled Bayesian strategy is used for instance in the version of the EM/SMC

smoothing algorithm that uses the parameter prior density (Syldatk et al. [2012])

and in some sensor bias estimation algorithms, like Lin et al. [2004].

2.2.2.3 Coupled Bayesian approach

For certain problems with low parameter identifiability, accurate parameter esti-

mates may not be achievable even using the prior information, making p
(

sk

∣
∣
∣θ̂, Zk

)

a poor approximation of p
(
sk
∣
∣Zk

)
. As a simple example, let us suppose that Sk

and Θ are both discrete random variables, where Sk can assume the values sAk
and sBk , and Θ can assume the values θA and θB. Let us then assume that

P
(
sAk , θ

A
∣
∣Zk

)
= 0.45, P

(
sAk , θ

B
∣
∣Zk

)
= 0,

P
(
sBk , θ

A
∣
∣Zk

)
= 0.10, P

(
sBk , θ

B
∣
∣Zk

)
= 0.45.
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In this case, the MAP estimate based on p
(
θ|Zk

)
is θ̂k = θA. But then, we

would have

P
(
sAk
∣
∣θA, Zk

)
= 0.818 and P

(
sBk
∣
∣θA, Zk

)
= 0.182

whereas

P
(
sAk
∣
∣Zk

)
= 0.45 and P

(
sBk
∣
∣Zk

)
= 0.55.

In order to avoid these discrepancies, an alternative is to tackle the problem

using a coupled Bayesian strategy, where estimation is based on the joint posterior

density p
(
sk, θ

∣
∣Zk

)
. Let us consider the augmented state Xk =

[

Sk

Θ

]

, with

realizations denoted by xk. In the coupled Bayesian approach, we could, for

instance, obtain the joint MAP

x̂k = arg sup
xk

p
(
xk

∣
∣Zk

)
(2.44)

or the joint MMSE

x̂k =

∫

xkp
(
xk

∣
∣Zk

)
dxk. (2.45)

In line with our goal of characterization of uncertainty in estimation, the

coupled Bayesian approach also allows us to calculate descriptive statistics about

Sk and Θ that fully take the dependence between their errors into account, such

as the joint covariance

Pk =

∫

(xk − x̂k) (xk − x̂k)
T p
(
xk

∣
∣Zk

)
dxk. (2.46)

Examples of joint Bayesian nonlinear parameter estimation algorithms are the

PF with artificial dynamics (Gordon et al. [1993], Higuchi [2001]) and the Liu

and West Particle Filter (LWPF) (Liu and West [2001]).
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2.3 Joint multi-target tracking

Many traditional estimation concepts such as probability densities, means, co-

variances, differential entropy, and so forth, rely on states and observations being

represented as either scalars or vectors. For this reason, they are not directly

applicable to the Multi-Target Tracking (MTT) problem, where we consider that

the number of objects may need to be estimated itself, the number of observa-

tions may vary for a given state, and there may be uncertainty on which objects

originated which observations.

Early MTT approaches consisted of treating the problem as a set of separate

single-target tracking problems, each solved using a suitable Bayesian estima-

tor, with the results of single-object estimation integrated by a separate pro-

cess to form a global result. This led to development of algorithms such as the

Nearest-Neighbor (NN), the Joint Probabilistic Data Association (JPDA), and

the Multiple Hypothesis Tracking (MHT). These approaches were referred to by

Mahler [2008] as “bottom-up” MTT, in the sense that they consisted in propos-

ing a solution to a considerably simpler (i.e. “lower”) problem, and then using

complementary steps to extend the solution to a more general (i.e. “higher”)

problem.

The huge interest in a rigorous mathematical treatment of the MTT problem,

as well as in approximately optimal Bayesian solutions for it, however, led to

an alternative approach, based on the calculation of the posterior probability

distribution that statistically represents the entire multi-target scenario. This

approach was referred by Mahler [2008] as “top-down” MTT, because it consists

of first describing the most general and complex problem, and thereafter making

successive approximations and simplifications until the problem becomes solvable.

In order to extend traditional estimation concepts to multi-object scenarios, the

Finite Set Statistics (FISST) and Poisson Point Process (PPP) may be used.

In the rest of this section, we are going to review some key concepts of FISST

and PPP theory. This review will be restricted to the concepts that are effectively

used throughout this thesis; for the interested reader, a detailed description of

FISST can be found in Goodman et al. [1997]; Mahler [2007] and of PPP in Daley

and Vere-Jones [2003].
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2.3.1 Finite Set Statistics

2.3.1.1 Multi-object calculus

Let N = R
n × Π, where R

n denotes the n-dimensional Euclidean space and Π is

a discrete set of elements. Let also

• ρ be the product measure of the Lebesgue measure on R
n with the counting

measure;

• A be the hyperspace of all subsets A of N, i.e. containing every A ⊆ N, the

null set ∅ included;

• X be the hyperspace containing all finite subsets x of N, i.e. containing all

sets with the form x =
{
x(1), . . . , x(t)

}
, where t is the number of elements

of the set and x(i) ∈ N, i ∈ {1, . . . , t}, and also containing the null set ∅.

Consider a set function φ : A → R and a finite set function f : X → R. The

set integral of f(x) w.r.t. a subset A of N is defined as1

∫

A

f(x)δx , f(∅) +
∞∑

t=1

1

t!

∫

A× . . .× A
︸ ︷︷ ︸

t

f
({

x(1), . . . , x(t)
})

ρ(dx(1)) . . . ρ(dx(t))

(2.47)

and we also adopt the notation

∫

f(x)δx ,

∫

N

f(x)δx. (2.48)

The set derivative of φ(A) w.r.t. a finite set x is defined as

δφ

δx
(A) , lim

ρ(λx)ց0

φ (A ∪ λx)− φ(A)

ρ (λx)
(2.49)

where λx denotes a neighborhood of x. The set integral and derivative are estab-

lished as inverse operations by the fundamental theorem of multi-object calculus,

1A mathematically rigorous definition of the set integral requires additional explanations;
see [Mahler, 2007, Section 11.3.3.1].
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which states that

φ(A) =

∫

A

δφ

δx
(∅)δx (2.50)

[
δ

δx

∫

A

f(w)δw

]

A=∅

= f(x). (2.51)

The multi-object Dirac delta density is defined as follows:

δx′(x) ,







0, if |x| 6= |x′|

1, if x = x′ = ∅

∑

π∈Πt

∏t

i=1 δ
(
x(i) − x′(π(i))

)
if







x =
{
x(1), . . . , x(t)

}

x′ =
{
x′(1), . . . , x′(t)

}

(2.52)

where Πt is the set of all permutations of the sequence (1, . . . , t), and | · | denotes
the cardinality operator. It is possible to show [Mahler, 2007, Appendix B.2] that

∫

δx′(x)f(x)δx = f(x′). (2.53)

2.3.1.2 Random Finite Sets

A Random Finite Set (RFS) X, defined for the space N, is a random variable X :

N → X. It may be represented as X =
{
X(1), . . . , X(T )

}
, where the cardinality

T of the RFS is also a random variable. A RFS is appropriate to represent the

state of a multi-object scenario (such as a multi-target tracking scenario), where

X(1), . . . , X(T ) denote the state of individual objects.

Let P be the probability function (see e.g. Klenke [2008]) associated with the

RFS X. The Belief-mass function (associated with X) of a subset A of N is

defined as

βX(A) , P (X ⊆ A) (2.54)

and, denoting a realization of X by x, the RFS density function f(x) is defined
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as

f(x) ,

[
δβX(A)

δx

]

A=∅

(2.55)

which, from the fundamental theorem of multi-object calculus (2.51), satisfies

∫

A

f(x)δx = βX(A). (2.56)

Conditional Belief-mass functions and conditional RFS densities may be de-

fined using conditional probabilities. Consider the joint probability function

P (X ⊆ A,Γ = γ), where Γ and γ denote respectively a random variable (also

possibly a RFS) and an arbitrary realization. The conditional probability P (X ⊆
A|Γ = γ) is given by P (X⊆A,Γ=γ)

P (Γ=γ)
. From this quantity, we can describe the condi-

tional Belief-mass and conditional RFS density as follows:

∫

A

f(x|γ)δx = βX|Γ(A|γ) = P (X ⊆ A|Γ = γ). (2.57)

2.3.1.3 Estimation of Random Finite Sets

It can be shown (see Vo et al. [2005]) that the Bayes rule also applies to RFS

densities, i.e. given a second RFS Z with corresponding realizations z, we have

f(x|z) = f(z|x)f(x)
f(z)

. (2.58)

When estimating a random variableX, we are frequently interested in extract-

ing a point estimate x̂ from a pdf p(x) (generally conditioned on some sequence

of observations). x̂ may be for instance the Maximum a Posteriori (MAP) es-

timate, or the Minimum Mean Square Error (MMSE) estimate. The MAP and

the MMSE cannot, however, be applied to RFS densities. Careless attempts to

extend these estimates to the multi-object estimation problems may lead to lack

of robustness (as shown by Mahler [1999]) or coalescence of estimates (by Blom

et al. [2008]).

In order to obtain a point estimate x̂ of a RFS X, from a RFS density f(x),
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Mahler [1999] proposes the Joint Multi-target (JoM) estimate, given by

x̂ = arg sup
{x(1),...,x(t)}

ct

t!
f
({

x(1), . . . , x(t)
})

(2.59)

where c is a parameter with the same units of measurement of a single-object

state x(i) (which, in case one decides to scale x(i) by changing its units of mea-

surements, should be scaled accordingly). The argument of the arg sup function

in (2.59) can be interpreted as the probability mass of the hypervolumes around
{
x(1), . . . , x(t)

}
, if f

({
x(1), . . . , x(t)

})
was discretized with separation c in the

single-object space. The parameter c is discussed with more detail in [Mahler,

2007, Remark 2.2]. The JoM estimate can be considered as a multi-object version

of the MAP estimate, since it is mathematically equivalent to the MAP in the

case of a single object (i.e. X =
{
X(1)

}
).

Another useful statistic related to RFS estimation is the Optimal Subpattern

Assignment Metric (OSPA) defined in Schuhmacher et al. [2008]. It corresponds

to a measure of distance between two finite sets, which can be used, for instance,

to evaluate the accuracy of a multi-object estimate x̂. The OSPA metric between

the finite sets x = {x(1), . . . , x(t)} and x = {x(1), . . . , x(t)} (where the single-object

states x(i) and x(i) assume values in an Euclidean space Rn) is defined as follows.

Let 1 ≤ p < ∞ be an order parameter that emphasizes the Euclidean distances

between the objects of the two finite sets, and c > 0 be a cut-off parameter that

emphasizes the difference in the number of objects. Let also Πt be the set of all

permutations on (1, . . . , t), and d(c)(a, b), a, b ∈ R
n be defined by

d(c)(a, b) , min (‖a− b‖, c) . (2.60)

The OSPA metric between x and x, parametrized by p and c, is then defined

by

ǫ(c)p (x,x) ,

(

1

t

(

min
π∈Πt

t∑

j=1

d(c)
(
x(j), x(π(j))

)p
+ cp(t− t)

)) 1
p

(2.61)
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for t ≤ t, and

ǫ(c)p (x,x) , ǫ(c)p (x,x) (2.62)

otherwise. From the OSPA metric, Guerriero et al. [2010] have defined the Min-

imum Mean OSPA (MMOSPA) estimate, given by

x̂ , arg inf
x

∫
(
ǫ(c)p (x,x)

)p
f(x)δx. (2.63)

If the JoM can be considered as a multi-object version of the MAP estimate,

the MMOSPA can be considered as a modified MMSE estimate applied to the

multi-object estimation problem, with the square error used in the MMSE esti-

mate being replaced by the p-th power of the OSPA metric. For X =
{
X(1)

}
,

the MMOSPA and MMSE are mathematically equivalent for p = 2.

2.3.2 Poisson Point Process theory

PPP theory (Daley and Vere-Jones [2003]) provides a way of representing multi-

object probability distributions without resorting to multi-object calculus. Al-

though we mainly use FISST in this thesis, two PPP concepts – Janossy measures

and Janossy densities, will prove useful in our work.

Consider again the spaceN and the measure ρ described in Section 2.3.1.1. Let

T be a discrete random variable that assumes values in N. For a given realization

t of T , consider t random variables (in N) X(1), . . . , X(t). We now make the

important assumption that the joint probability distribution of X(1), . . . , X(t)

conditioned on t is permutation-symmetric w.r.t. its arguments, i.e. that given a

set of subsets
{
A(1), . . . , A(t)

}
of N, we have

P
(
X(1) ∈ A(1), . . . , X(t) ∈ A(t)

∣
∣T = t

)

= P
(
X(1) ∈ A(π(1)), . . . , X(t) ∈ Aπ(t)

∣
∣T = t

)
(2.64)

for any permutation π of (1, . . . , t). With this assumption, we can define the
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Janossy measure Jt on the Borel σ-algebra of N× . . .×N
︸ ︷︷ ︸

t

as

Jt
(
A(1) × . . .× A(t)

)

, t!P (T = t)P
(
X(1) ∈ A(1), . . . , X(t) ∈ A(t)

∣
∣T = t

)
(2.65)

and the Janossy density jt is defined as the Radon-Nikodym derivative

jt
(
x(1), . . . , x(t)

)
,

dJt
d ρ× . . .× ρ
︸ ︷︷ ︸

t

(2.66)

such that the following relationship holds

P
(
X(1) ∈ A(1), . . . , X(t) ∈ A(t)

∣
∣T = t

)

=

∫

A(t)×...×A(1)

1

t!P (T = t)
jt
(
x(1), . . . , x(t)

)
ρ(dx(1)) . . . ρ(dx(t)). (2.67)

Note that both Janossy measures and Janossy densities are permutation-

symmetric w.r.t. its arguments.

2.3.3 FISST, PPP and multi-object statistical represen-

tations

FISST or PPP theory are useful to statistically describe multi-object scenarios

where

1. The number of targets may be both time-varying and unknown, and hence

it is appropriate to treat it as a random variable;

2. The order of the individual object states has no relevance, and this should

be reflected in the statistical representation.

To illustrate the second point, consider a two-target tracking scenario, where

the state of each target has the form X(i) = [P
(i)
x , P

(i)
y ]T , i ∈ (1, 2) where Px

and Py correspond to the position in two-dimensional Cartesian coordinates.
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Assuming that the number of targets is known, we could, in principle, rep-

resent the two-target scenario by a four-dimensional vector Xk =

[

X
(1)
k

X
(2)
k

]

=

[

P
(1)
x , P

(1)
y , P

(2)
x , P

(2)
y

]T

, and statistically describe this scenario by a pdf p(x).

Let us then consider two realizations of this random variable, say, xk(1) =

[4, 3,−1, 5]T and xk(2) = [−1, 5, 4, 3]T . Clearly, the events {Xk = xk(1)} and

{Xk = xk(2)} correspond exactly the same event; namely, the event that there is

one target at position (−1, 5) and another at (4, 3). Therefore, we can say that

the order of the entries X
(1)
k and X

(2)
k in Xk is irrelevant.

A more complex problem is the Multi-Target Tracking and Labelling (MTTL)

problem, when we want also to uniquely identify objects across different time

steps. Let X1 and X2 be the multi-target state at two different times 1 and 2.

For two realizations x1 = [4, 3,−1, 5]T and x2 = [3,−4, 2,−1]T , we would perhaps

like to indicate that the target at (3,−4) in time 2 is the same target which was

at (4, 3) at time 1.

One possible solution is to treat the vector index as the object identifier, i.e.

to assume that x
(i)
k , for a fixed i, corresponds always to the same object across

multiple realizations and time steps. With this formulation, the order of the

single-target vectors in the multi-target vector is thus relevant. This approach

has been used in various works (e.g. Salmond et al. [1997], Crouse et al. [2011a],

Blom and Bloem [2011], Garćıa-Fernández et al. [2011]), but cannot handle the

situation where targets may appear and disappear.

A more general solution is to maintain the assumption that the targets are

unordered, but add a identifier entry (label) to the single-target state vector. This

approach has been mentioned in works like Ma et al. [2006], Vu et al. [2011], Zhu

et al. [2011], and will be extensively discussed in Chapter 4.

The FISST and PPP multi-object statistical representations are equivalent,

in the sense that both treat the multi-object states as unordered, and the number

of targets as random. To see the relation between the two approaches, it can be

shown (see Mori et al. [2009]) that for a RFS X =
{
X(1), . . . , X(T )

}
, alternatively
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Table 2.1: How the a labelled multi-target state may be mathematically repre-
sented

Physical state
Conventional
notation

FISST PPP






2

4

3

1






, assuming

X
(1)
k to corre-

spond to A,
X

(2)
k to B)











2

4

A



 ,





3

1

B



















2

4

A



 ,





3

1

B









or







3

1

B



 ,





2

4

A









represented by the random variables T,X(1), . . . , X(T ), we have

jt
(
x(1), . . . , x(t)

)
= f

({
x(1), . . . , x(t)

})
(2.68)

regardless, as expected, of the order of the arguments of jt(·). Table 2.1 shows

how a labelled multi-target state (i.e. a multi-target state where the objects are

individually identified) may be represented using conventional statistics, FISST

and PPP.

2.3.4 The Multi-target Sequential Monte Carlo filter

2.3.4.1 System model

The Multi-target Sequential Monte Carlo (M-SMC) filter, presented in Vo et al.

[2005] and [Mahler, 2007, Chapter 15], is basically a multi-target version of the

particle filter, based on FISST. It is derived by first assuming that the system

described by (Xk,Zk) is a POM1 process. From Section 2.1.3, this corresponds

to assuming that

f
(
zk
∣
∣x0, . . . ,xk, Z

k−1
)
= f (zk |xk ) , (2.69)

f
(
xk

∣
∣x0, . . . ,xk−1, Z

k−1
)
= f (xk |xk−1 ) . (2.70)
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where Zk = (z1, . . . , zk). With these assumptions, the Bayesian recursion for the

posterior RFS density f(xk|Zk) has the form

f
(
xk

∣
∣Zk

)
=

f(zk|xk)f
(
xk

∣
∣Zk−1

)

f (zk |Zk−1 )
(2.71)

where

f
(
xk

∣
∣Zk−1

)
=

∫

f(xk|xk−1)f
(
xk−1

∣
∣Zk−1

)
δxk−1 (2.72)

f(zk|Zk−1) =

∫

f(zk|xk)f
(
xk

∣
∣Zk−1

)
δxk. (2.73)

The functions f(x0), f(xk|xk−1) and f(zk|xk) correspond respectively to the

multi-target prior, multi-target state transition and multi-target likelihood den-

sities. Their exact formulas depend on the assumptions of the scenario. A list

of multi-target filtering formulas for several multi-target scenarios is available in

[Mahler, 2007, Chapters 12–14].

Assuming a POM1 system model, a multi-target version of the PF can be

derived using relationships between RFS densities and conventional probability

densities, as done by Vo et al. [2005]. The resulting algorithm is described in the

next section.

2.3.4.2 SIR M-SMC filter algorithm

Initialization:

1. For each particle i = 1, . . . , NP

(a) Sample1 x0(i) ∼ f(x0)

(b) Make w0(i) =
1

NP

At every time step k = 1, 2, . . .:

1. For each particle i = 1, . . . , NP

1Sampling from a RFS density can be accomplished after expressing it in terms of conven-
tional probability densities or mass functions, as shown in [Mahler, 2007, Chapters 12–14].
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(a) Perform importance sampling by making

xk(i) ∼ q (xk(i) |xk−1(i), zk )

where q (xk |xk−1, zk ) is a proposal RFS density

(b) Calculate the unnormalized weight according to

wk(i) =
f (zk |xk(i)) f (xk(i) |xk−1(i))

q (xk(i) |xk−1(i), zk )
wk−1(i)

2. Normalize the particle weights according to

wk(i) =
wk(i)

∑NP

j=1wk(j)
, i = 1, . . . , NP

3. Perform resampling by sampling NP indexes
(
j̃(i)

)NP

i=1
according to the pmf

(wk(j))
NP

j=1 and afterwards making

xk(i) := xk

(
j̃(i)

)

wk(i) :=
1

NP
, i = 1, . . . , NP

2.4 Sensor management

The Bayesian sensor management problem, represented in Fig. 2.2, is basically a

stochastic control extension of the Bayesian estimation problem that we described

in Section 2.1.1. This means that besides the state and observation processes

(denoted respectively by Xk and Zk) we consider also a third random process Uk

(with realizations denoted by uk), corresponding to the control action, which in

sensor management is also commonly referred to as the sensing action.

The sensing action is determined on the basis of statistics (ideally sufficient

statistics) describing the statesXk, computed by the same estimating process that

is used to compute the quantities of interest (mean, variance, etc.). The input

to the estimator is the available information Zk, composed by all observations

z1, . . . , zk and sensing actions u1, . . . , uk known at time k. The control process

that determines the sensing action is called the sensor management process.
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Figure 2.2: Sensor management as a stochastic control problem

As we can see from Figure 2.2, the difference between sensor management

and the standard stochastic control problem is that, in sensor management, the

feedback (i.e. the control decision Uk) targets the generation of observations Zk

(i.e. a direct feedthrough input), instead of targeting the state Xk. Typically,

sensor management is performed in order to optimize the use of sensors, trying

to achieve the best estimation performance with minimum sensing cost.

Some real-world examples of sensing actions include

1. Point the beam of a phased array radar to a particular direction (e.g. Burns

and Blair [2004]);

2. Move a platform to which a sensor is attached (such as an Unmanned Aerial

Vehicle (UAV)) (Skoglar et al. [2009]);

3. Activate or de-activate sensors in a sensor network (Boers et al. [2008]);

4. Changing the parameters of a radar transmitter or receiver (Katsilieris et al.

[2012]).

2.4.1 Mathematical formulation

Let us suppose that the estimation quality is characterized by a reward (or risk)

function γ(Xk, Zk, Uk), that we would like to maximize (or minimize). At a given
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time k, prior to the generation of the observation Zk, let

Zk−1 = (z1, . . . , zk−1, u1, . . . , uk−1)

denote all available information until and including time k − 1. Let us assume

that the future sensing action Uj, j ≥ k, has the form

Uj =







ηj
(
Zk−1

)
, j = k

ηj
(
Zk . . . , Zj−1, Uk, . . . , Uj−1, Z

k−1
)
, j > k

(2.74)

for some function ηj. We may then refer to the sequence of functions

(ηk, . . . , ηk+h−1)

as a control law for time step k and time horizon h. Let us assume, without loss

of generality, that γ is a reward function to be maximized. Then from [Bagchi,

1993, Chapter 2], the optimal Closed-Loop (CL) control law for time step k, with

time horizon h and reward function γ is given by

arg max
(ηk,...,ηk+h−1)

E

[
k+h−1∑

j=k

γ(Xj, Zj , Uj)

∣
∣
∣
∣
∣
Zk−1

]

. (2.75)

Unfortunately, for general nonlinear, non-Gaussian systems, solving (2.75) is

extremely difficult even with numerical approximations. Typically, suboptimal

solutions (such as Kreucher and Hero [2005]; Kuwertz et al. [2010]) are used.

The sensor management problem can be simplified by assuming that the control

law does not depend on any information that is not yet available at time k,

i.e. that the sensing action has the form Uj = ηj
(
Zk−1

)
(see [Bagchi, 1993,

Chapter 2]). Note that this assumption causes Uj to become deterministic, and

hence it can be written as uj. Also, we can perform the optimization directly over

the space of sensing actions uk, . . . , uk+h−1, rather than over the space of functions

ηk, . . . , ηk+h−1. The resulting solution corresponds to the optimalOpen-Loop (OL)
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control law, given by

arg max
(uk,...,uk+h−1)

E

[
k+h−1∑

j=k

γ(Xj, Zj , uj)

∣
∣
∣
∣
∣
Zk−1, uk, . . . , uk+h−1

]

. (2.76)

The optimal Open-Loop Feedback (OLF) solution is similar to the optimal OL

solution, with the difference that at every subsequent time step k+1, k+2, . . . we

compute an entire new optimal OL solution, rather than applying sensing actions

determined at previous time steps. This solution is used e.g. in Hanselmann

et al. [2008]; Williams et al. [2007]. Optimal OL and OLF sensor management

may, in theory, be performed by only using numerical approximations, although

in practice, higher values of h will require additional approximations.

Finally, a simple but popular (Boers et al. [2008]; Kreucher et al. [2005])

approach to sensor management is to consider h = 1, i.e. to perform short-term

sensor management. With this approach, the OL, CL and OLF solutions are all

equivalent, and the optimal solution is given by

argmax
uk

E
[
γ(Xk, Zk, uk)|Zk−1, uk

]
. (2.77)

2.4.2 Sensor management criteria

Besides deciding whether to perform CL, OL or OLF sensor management, it

is necessary to choose the sensor management criterion, i.e. which reward/risk

function γ should maximized/minimized. There are two popular approaches to

perform this choice: task-driven and information-driven sensor management.

2.4.2.1 Task-driven sensor management

A reasonable sensor management approach is to make γ correspond to a perfor-

mance metric suitable for our problem of interest. For instance, we may have

γ(Xk, Zk, Uk) = (Xk − x̂k(Zk, Uk))
2, i.e. the risk function corresponds to the

squared error between the true state and the estimate (which depends on the

observation Zk and the sensing action Uk). This simple, performance-oriented

approach to sensor management was referred to in Kreucher et al. [2005] as task-

driven sensor management. While performing task-driven sensor management is
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intuitive and seemingly straightforward, it may be sometimes impractical.

As remarked by Kreucher et al. [2005], for complex problems (e.g. involving a

large number of dimensions and/or state vector entries defined in different state

spaces) it may be difficult to define a scalar metric that meaningfully measures

the overall performance of our estimator. We may, of course, define a performance

metric for such problem as a weighted sum of simpler performance metrics, but

the selection of those weights may be highly subjective or prone to overfitting.

Task-driven sensor management may also be impractical when calculating the

performance metric has a significant computational cost. In this case, even if we

take the simplest sensor management approach (short-term), sensor management

can be computationally expensive, since from (2.77), we also need to integrate the

performance metric over both the state Xk and the observation Zk, and we need

to perform an optimization over the space of sensing actions uk. Additionally, al-

though we usually can evaluate a performance metric off-line, sensor management

must be performed online.

2.4.2.2 Information-driven sensor management

One alternative to task-driven sensor management is to define a goal function

γ(Zk, Uk) based on the posterior density p
(
xk

∣
∣zk, uk, Z

k−1
)
, not on the estimate

x̂k(Zk, Uk) or the true state Xk. In information-driven sensor management (as

called by Kreucher et al. [2005]), one attempts to maximize the “information

content” of the posterior, i.e. its capacity of yielding (in some sense) useful

information to the user of the system, rather than attempting to directly optimize

a performance metric.

There are basically two types of information-driven sensor management crite-

ria:

1. When γ(Zk, Uk) represents the “information content” of the posterior den-

sity p(xk

∣
∣Zk ) = p

(
xk

∣
∣zk, uk, Z

k−1
)
. Example are the Shannon entropy and

the Rényi entropy criteria;

2. When γ(Zk, Uk) represents the “information gain” obtained by moving from

the prior p
(
xk

∣
∣Zk−1

)
to the posterior p

(
xk

∣
∣zk, uk, Z

k−1
)
. Examples are the

Kullback-Leibler (KL) divergence and Rényi divergence criteria.
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Information-driven sensor management are a popular alternative to task-

driven sensor management, especially for complex problems where scalar per-

formance measures are difficult to define or computationally expensive, such as

the MTT problem. They have been used e.g. in Doucet et al. [2002]; Hanselmann

et al. [2008]; Kreucher et al. [2005]; Williams et al. [2007].

However, whereas task-driven criteria are directly related to performance mea-

sures, having thus clear interpretation to the user, information-driven criteria (like

the Shannon entropy and the KL divergence) represent more abstract concepts,

raising the question of whether using this criteria can improve estimation quality

in a way that conforms with the expectations of the user.

2.4.3 Sensor management applied to POM1 processes

POM1 processes, described in Section 2.1.3, can be easily adapted to include sen-

sor management, leading to what we call Partially Observed Markov-1 processes

with Direct Feedthrough (POM1DF), with the form

Xk+1 = fk (Xk,Mk) (2.78)

Zk = hk (Xk, Nk, Uk) (2.79)

Uk = ηk (Z1 . . . , Zk−1, U1, . . . , Uk−1) (2.80)

X0 ∼ p(x0) (2.81)

where p(x0) is the prior pdf, fk, hk and ηk are arbitrary functions, and (Mk)
∞
k=0

and (Nk)
∞
k=1 are all mutually independent random variables, also independent

from p(x0). This model has the following properties:

p
(
zk
∣
∣x0, . . . , xk, Z

k−1, uk

)
= p(zk|xk, uk), (2.82)

p
(
xk

∣
∣x0, . . . , xk−1, Z

k−1, uk

)
= p(xk|xk−1), (2.83)

p
(
x0, . . . , xk−1

∣
∣Zk−1, uk

)
= p(x0, . . . , xk−1

∣
∣Zk−1 ). (2.84)

Note than an important assumption of POM1DF processes is that the sens-

ing action Uk does not affect the evolution of the state Xk. A particular sensor

management problem that does not fit this assumption is the smart target track-
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ing problem (considered e.g. in Kreucher et al. [2004]; Savage and Scala [2009]),

where it is assumed that the target is aware of the sensing action and can respond

to it (for instance, by attempting to evade being tracked).

2.4.4 Sensor management using particle filters

If a particle filter or similar method is used as estimator (see Fig. 2.2) in a sen-

sor management problem, approximately optimal short-term sensor management,

given by (2.77), can be implemented in a straightforward manner. We will show

how this can be accomplished for POM1FD processes.

If sensor management is present, a SIS or SIR particle filter provides an ap-

proximation of p
(
x0, . . . , xk

∣
∣Zk

)
. The only difference is that Zk includes not

only the observations z1, . . . , zk but also the sensing actions u1, . . . , uk. For a

POM1FD process, the optimal proposal density is given by

q
(
xk

∣
∣x0, . . . , xk−1, Z

k
)
= q (xk |xk−1, zk, uk )

= p (xk |xk−1, zk, uk ) . (2.85)

and for deterministic uk (the case of short-term sensor management), the unnor-

malized weight update is given by

wk(i) =
p
(
zk
∣
∣xk(i), Z

k−1, uk

)
p (xk(i) |xk−1(i))

q (xk(i) |xk−1(i), zk, uk )
wk−1(i).

Since all sensor management criteria implemented in this work belong to

the information-driven category, we consider that reward function has the form

γ(Zk, uk). Therefore, the function to be maximized in (2.77), i.e. the expected

reward, is given by

E
[
γ(Zk, uk)|Zk−1, uk

]
=

∫

γ(zk, uk)p
(
zk
∣
∣Zk−1, uk

)
dzk. (2.86)
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Observe now that the observation posterior is given by

p
(
zk
∣
∣Zk−1, uk

)

=

∫

. . .

∫

︸ ︷︷ ︸

k+1

p
(
zk
∣
∣x0, . . . , xk, Z

k−1, uk

)
p
(
x0, . . . , xk

∣
∣Zk−1, uk

)
dx0 . . . dxk

=

∫

. . .

∫

︸ ︷︷ ︸

k+1

p
(
zk
∣
∣x0, . . . , xk, Z

k−1, uk

)
p
(
xk

∣
∣x0, . . . , xk−1, Z

k−1, uk

)

× p
(
x0, . . . , xk−1

∣
∣Zk−1, uk

)
dx0 . . . dxk (2.87)

and using POM1DF properties (2.82)–(2.84), (2.87) becomes

p
(
zk
∣
∣Zk−1, uk

)

=

∫ ∫

p (zk |xk, uk ) p (xk |xk−1 ) p
(
xk−1

∣
∣Zk−1

)
dxkdxk−1

≈
NP∑

i=1

wk−1(i)

∫

p (zk |xk, uk ) p (xk |xk−1(i)) dxk (2.88)

where {xk−1(i), wk−1(i)}NP

i=1 is the set of particles obtained at the previous time

step k − 1.

We can then obtain a set of weighted samples {zk(i), wk−1(i)}NP

i=1 from the

observation posterior p
(
zk
∣
∣Zk−1, uk

)
by using sequential sampling; i.e. for each

particle i, we sample xk(i) ∼ p (xk |xk−1(i)), and zk(i) ∼ p (zk |xk(i), uk ). The

expected reward (2.86) can then be approximated as

E
[
γ(Zk, uk)|Zk−1

]
=
∑

i=1

wk−1(i)γ(zk(i), uk). (2.89)

For some systems, it may be possible to provide better approximations of

E
[
γ(Zk, uk)|Zk−1

]
by using more clever sampling schemes than the one described

here; see Doucet et al. [2002] for details. Note also that the expected reward

can be calculated in a similar manner for OL/OLF sensor management with an

arbitrary time horizon h, by iteratively repeating the sequential sampling process.

In practice, due to increase of dimensionality, the approximation of the expected
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reward is likely to be poor except for very small h. Another (and computationally

expensive) approach is to increase the number of samples exponentially with h,

as suggested by Kreucher and Hero [2005].
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Chapter 3

Online Bayesian parameter

estimation using the

Rao-Blackwellized marginal

particle filter

A well-known limitation of the standard particle filter is its inability to handle

systems that include static variables (parameters) to be estimated together with

the dynamic states. This limitation is due to the well-known degeneracy phe-

nomenon, which is caused by the gradual loss of information that occurs during

every iteration of the filter.

Given the practical interest in the problem of non-linear joint state and pa-

rameter estimation, various techniques have been proposed to adapt SMC methods

to this problem. One of the best known techniques is the Liu and West Particle

Filter (LWPF), which as most online Bayesian parameter estimation techniques,

is based on the idea of adding artificial dynamics to the process model. While the

LWPF has clear conceptual advantages over similar techniques, as we are going

to see, it may still lead to biases in the approximation of the posterior probability

distribution of states and parameters.

In this chapter, we provide two new methods to estimate the state and pa-

rameter jointly for a general state-space model, by first deriving new versions of
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the recently proposed Rao-Blackwellized marginal particle filter (RBMPF). These

novel algorithms combine a PF-like algorithm with a non-sequential Monte Carlo

estimator to minimize the bias commonly produced by online Bayesian PF-based

parameter estimation techniques. We illustrate the algorithms by applying them

to two practical problems: the target tracking problem of estimating the turn rate

of a constant turn maneuver, and the econometrics problem of stochastic volatility

estimation from stock data (using the Heston model).

3.1 Introduction

As we mentioned in Section 2.1.2.4, the SIR degeneracy phenomenon makes the

popular SIR particle filter an unsuitable solution to the problem of joint state

and parameter estimation, where static parameters need to be estimated together

with time-varying states. Despite this fact, the high interest in the non-linear

parameter estimation problem has led to many developments on adapting SMC

methods to this problem. As mentioned in Kantas et al. [2009], online Bayesian

approaches typically use the idea of adding artificial dynamics to the system

model. While this technique is theoretically able to prevent degeneracy from

occurring, it has the collateral effect of leading to biases (generally difficult to

quantify) in the particle approximation of the probability distribution of the

states and parameters.

A popular and well-established method for online parameter estimation is the

LWPF (Liu and West [2001]), used e.g. in Carvalho et al. [2010]; Liu and Niranjan

[2012]; Nemeth et al. [2012]. The LWPF attempts to reduce the aforementioned

bias in the posterior distribution by using a special model of parametrized artifi-

cial dynamics. As we are going to see in Section 3.2.2, however, the LWPF is also

inherently sub-optimal in approximating the true posterior, and its performance

may be sensitive to the parametrization of the artificial dynamics.

In this work, we propose two novel methods for online Bayesian joint state

and parameter estimation. More specifically, we provide two new versions of

the Rao-Blackwellized marginal particle filter (RBMPF), which has been

recently proposed (Lindsten et al. [2012]) as a solution to the Bayesian joint

state and parameter estimation problem. We emphasize here that the RBMPF
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is not be confused with the far more well-known Rao-Blackwellized particle filter

(RBPF) introduced in Section 2.1.4. The difference between the two techniques

will be explained in Section 3.2.3.

Our novel algorithms, in comparison with the RBMPF presented in Lindsten

et al. [2012], are more general, in the sense that they do not require the system

model to contain any linear-Gaussian dependencies. In comparison with the

LWPF, they use more elaborate (and non-parametric) approximations of the

parameter conditional probabilities, which in principle, leads to a more accurate

approximation of the posterior distribution (and therefore better characterization

of estimation uncertainty), at the expense of additional computational cost.

This work is organized as follows. Section 3.2 discusses the theoretical advan-

tages and issues of state-of-the-art online Bayesian PF-based methods, in the con-

text of joint state and parameter estimation. Section 3.3 proposes the D-RBMPF,

an implementation of the RBMPF for parameter estimation, directly applicable

to discrete parameters and to discretized versions of continuous parameters with

low dimension. Section 3.4 proposes the MC-RBMPF, an implementation of the

RBMPF suitable for more general models. Section 3.5 presents simulation re-

sults for the D-RBMPF applied to the problem of turn rate estimation in target

tracking. Section 3.6 presents simulation results for the MC-RBMPF applied to

the problem of stochastic volatility estimation using the Heston model. Section

3.7 draws conclusions.

3.2 State-of-the-art SMC methods applied to joint

state and parameter estimation

3.2.1 The SIR PF

In principle, any Bayesian recursion can be numerically approximated using a SIR

PF, which means that we can apply the algorithm described in Section 2.1.2.2 to
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the joint (Bayesian) state and parameter estimation model given by (2.39):

Sk+1 = fk (Sk,Θ,Mk)

Zk = hk (Sk,Θ, Nk)
[

S0

Θ

]

∼ p(s0, θ). (3.1)

The particle filter then approximates the joint posterior p
(
sk, θ

∣
∣Zk

)
as

p
(
sk, θ

∣
∣Zk

)
≈

NP∑

i=1

wk(i)δ(sk − sk(i))δ(θ − θk(i)) (3.2)

where NP is the number of particles and {sk(i), θk(i), wk(i)}NP

i=1 is the set of par-

ticles, with sk(i), θk(i) and wk(i) respectively being the state value, parameter

value and weight corresponding to the i-th particle. The algorithm is as follows:

Initialization:

1. For each particle i = 1, . . . , NP

(a) Sample (s0(i), θ0(i)) ∼ p(s0, θ)

(b) Make w0(i) =
1

NP

At every time step k = 1, 2, . . .:

1. For each particle i = 1, . . . , NP

(a) Perform importance sampling by making

sk(i) ∼ q(sk|sk−1(i), θk−1(i), zk) (3.3)

θk(i) = θk−1(i) (3.4)

where q(sk|sk−1, θ, zk) is a proposal density

(b) Calculate the unnormalized weight according to

wk(i) =
p(zk|sk(i), θk−1(i))p(sk(i)|sk−1(i), θk(i))

q(sk(i)|sk−1(i), θk−1(i), zk)
(3.5)
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2. Normalize the particle weights according to

wk(i) =
wk(i)

∑NP

j=1wk(j)
, i = 1, . . . , NP (3.6)

3. Perform resampling by sampling NP indexes
(
j̃(i)

)NP

i=1
according to the pmf

(wk(j))
NP

j=1 and afterwards making

(s0(i), . . . , sk(i), θk(i)) :=
(
s0
(
j̃(i)

)
, . . . , sk

(
j̃(i)

)
, θk
(
j̃(i)

))

wk(i) :=
1

NP
, i = 1, . . . , NP (3.7)

In Section 2.1.2.4, we mentioned that due to the degeneracy phenomenon, the

SIR PF is not an effective solution to the joint state and parameter estimation

problem. For this problem, the presence of parameters causes the “indifference

condition” (2.13) to be violated.

We can also see how the SIR PF fails at estimating static quantities by looking

at approximation (3.2). Note that this approximation assumes that at time k, Θ

takes one of the values (θk(i))
NP

i=1. Let then Λk be the support of Θ in the density

approximation (3.2) (i.e. the set of unique values contained in (θk(i))
NP

i=1), and let

Λk+1 be defined analogously for p
(
sk+1, θ

∣
∣Zk+1

)
. Then it is easily seen from the

algorithm, in particular from (3.4) and (3.7), that

Λk+1 ⊆ Λk (3.8)

or, in other words, the diversity of realizations of Θ considered by the PF can

only decrease with each time step. The speed of the decrease in cardinality of the

sequence Λk, k = 1, 2, . . ., is directly related to the variance of the weights; the

higher this variance, the less is the number of distinct particles that will survive

during the resampling step (3.7) of the filter.

Therefore, if the considered time period (i.e. the maximum value of k) is not

very large (which may be the case in offline parameter estimation), the number of

particles is sufficiently large, and the variance of the weights is sufficiently small,

the PF may still lead to good joint state and parameter estimation performance.

However, for online parameter estimation, where typically one considers an un-
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constrained time period, the cardinality of Λk will drop until it becomes 1, i.e.

until the PF will assume that there is a single possible value for Θ, a situation

that is referred to in literature as “degeneracy” or “self-resolving”. Needless to

say, deterioration of performance of the estimates may occur long before the PF

achieves the self-resolving situation.

The simplest approach to deal with degeneracy, as suggested in Gordon et al.

[1993] and applied e.g. in Higuchi [2001], is to attribute “artificial dynamics”

to the parameters, i.e. to assume that Θ is a time-varying state that evolves

according to

Θk+1 = f θ(Θk,M
θ
k ) (3.9)

where f θ is a function and M θ
k is an artificial noise. This approach ensures

maintenance of diversity in the considered values of Θ, but without any guidance

on how to choose f θ and M θ
k , it may easily lead to biases in the approximation

of the posterior distribution the joint state and parameter, as the mathematical

model of the system is being deviated from its underlying physical model.

3.2.2 The Liu and West PF

The LWPF (Liu and West [2001]) is a more elaborate PF variant designed to

prevent degeneracy in joint state and parameter estimation problem, based on

the idea of artificial dynamics. Recall that (3.2), together with (3.4) and (3.7),

causes degeneracy. The LWPF replaces approximation (3.2) with

p
(
sk, θ

∣
∣Zk

)
≈

NP∑

i=1

wk(i)δ(sk − sk(i))N
(
θ;mk(i, h), h

2Vk

)
(3.10)
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where h ∈ (0, 1] is a smoothing parameter and

mk(i, h) =
√
1− h2θk(i) +

(

1−
√
1− h2

)

θ̂k (3.11)

Vk =

NP∑

j=1

wk(j)
(

θ̂k − θk(j)
)(

θ̂k − θk(j)
)T

(3.12)

θ̂k =

NP∑

j=1

wk(j)θk(j). (3.13)

The original version presented in Liu and West [2001] is based on the Auxiliary

Particle Filter proposed by Pitt and Shephard [1999]. In practice, approximation

(3.10) can be easily adapted to be used with the SIR PF and nearly all variants

of the PF algorithm. For the SIR PF described in Section 3.2.1, this can be done

by replacing the step given by eq. (3.4) with

θk(i) ∼ N
(
θ;mk−1(i, h), h

2Vk−1

)
(3.14)

i.e. N (θ;mk−1(i, h), h
2Vk−1) represent the “artificial dynamics” of the state Θk.

In order to understand the strengths and limitations of the LWPF method, we

need, naturally, to evaluate how reasonable it is to replace approximation (3.2)

with (3.10). As shown in Liu and West [2001], the mean and the covariance of

Θ (w.r.t. p
(
θ
∣
∣Zk

)
) calculated by marginalizing (3.10) will be given respectively

by (3.13) and (3.12), i.e. it will be exactly the same as if they were calculated

by marginalizing (3.2) instead. Therefore, we can say that the LWPF provides a

reasonable approximation of the marginal density p
(
θ
∣
∣Zk

)
, in the sense that its

first two moments are correctly calculated based on the particle approximation.

Note, however, that p
(
sk, θ

∣
∣Zk

)
= p

(
sk
∣
∣Zk

)
p
(
θ
∣
∣sk, Z

k
)
, i.e. it is not simply

the product of the marginals p
(
sk
∣
∣Zk

)
and p

(
θ
∣
∣Zk

)
. Since p

(
sk
∣
∣Zk

)
is being

approximated according to

p
(
sk
∣
∣Zk

)
≈

NP∑

i=1

wk(i)δ(sk − sk(i)) (3.15)

the LWPF approximation (3.10) becomes reasonable if we additionally assume
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that

p
(
θ
∣
∣sk(i), Z

k
)
≈ N

(
θ;mk(i, h), h

2Vk

)
. (3.16)

We can see that approximation (3.16) has a number of limitations:

1. The covariance of θ conditioned on sk(i) and Zk is assumed to be the same

regardless of the particle i;

2. It is based on only the approximation of the marginal density p
(
θ
∣
∣Zk

)
and

the fact that sk(i) and θ(i) correspond to the same particle;

3. It is sensitive to the choice of the parameter h. A very low value of h

is undesirable because it causes the algorithm to behave as a regular PF,

being thus susceptible to degeneracy. But a large h has a collateral effect: it

causes (3.16) to depend less on θ(i), hence diluting the association between

same-particle values sk(i) and θ(i). Therefore, by having h too large, we

will cause the existing information about the dependency between Sk and

Θ to be neglected;

Therefore, in principle, the LWPF may still lead to significant biases on the

approximation on the joint posterior density p
(
sk, θ

∣
∣Zk

)
, in particular, if an

inappropriate value for the parameter h is chosen for the problem of interest.

3.2.3 The RBPF and the RBMPF

The two Rao-Blackwellized filters (RBPF and RBMPF) share a common prin-

ciple, namely, using two parallel interacting estimators. In other words, part of

the state Xk (say, Sk) is estimated using a SMC filter (a PF or one of its vari-

ants), and the another part (say, Tk) is estimated using a non-SMC method (like

a Kalman filter-like or a grid-based estimator).

As we have seen in Section 2.1.4.1, the RBPF approximates the density

p
(
s0, . . . , sk, tk

∣
∣Zk

)
as

p
(
s0, . . . , sk, tk

∣
∣Zk

)
≈

NP∑

i=1

wk(i)

(
k∏

j=0

δ(sj − sj(i))

)

p
(
tk
∣
∣s0(i), . . . , sk(i), Z

k
)
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where p
(
tk
∣
∣s0(i), . . . , sk(i), Z

k
)
is supposed to be approximated or calculated

using an appropriate non-SMC method, and {s0(i), . . . , sk(i), wk(i)}NP

i=1 is a par-

ticle approximation of p
(
s0, . . . , sk

∣
∣Zk

)
(obtained using a SMC-like algorithm).

Using marginalization, we can easily see that the filtering density may then be

approximated as

p
(
sk, tk

∣
∣Zk

)
≈

NP∑

i=1

wk(i)δ(sk − sk(i))p
(
tk
∣
∣s0(i), . . . , sk(i), Z

k
)
. (3.17)

The RBMPF, proposed by Lindsten et al. [2012] as a solution to the joint

state and parameter estimation problem, can be considered as a combination of

the RBPF with the MPF described in Section 2.1.5. Like the MPF, the RBMPF

attempts to compute only the filtering density p
(
sk, tk

∣
∣Zk

)
, which is approxi-

mated as

p
(
sk, tk

∣
∣Zk

)
≈

NP∑

i=1

wk(i)δ(sk − sk(i))p
(
tk
∣
∣sk(i), Z

k
)

(3.18)

where p
(
tk
∣
∣sk(i), Z

k
)
, i = 1, . . . , NP is supposed to be approximated or calcu-

lated using a non-SMC method, and {sk(i), wk(i)}NP

i=1 is a particle approximation

of p
(
sk
∣
∣Zk

)
obtained using a SMC-like algorithm.

Rao-Blackwellization seems an intuitive strategy to deal with the degeneracy

problem in joint state and parameter estimation. By replacing Tk with the param-

eter Θ in (3.17), (3.18), we obtain an alternative approximation of the posterior

density corresponding to (3.2). Furthermore, the posterior of Θ does not have

a time-decreasing support (see Section 3.2.1), due to the non-SMC nature of its

estimator.

However, as remarked by Lindsten et al. [2012], the RBPF is ineffective as a

solution to parameter estimation. The reason is as follows. By replacing Tk with

Θ in (3.17), we obtain

p
(
sk, θ

∣
∣Zk

)
≈

NP∑

i=1

wk(i)δ(sk − sk(i))p
(
θ
∣
∣s0(i), . . . , sk(i), Z

k
)
. (3.19)
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The problem of approximation (3.19) is that it explicitly depends on the par-

ticle representation of the past trajectory (S0, . . . , Sk−1). Assuming that this

particle representation is obtained using a SIR PF, we know that these past

states cannot be effectively estimated due to the degeneracy phenomenon de-

scribed in Section 2.1.2.4. In fact, with the passage of time, the PF framework

will cause states far in the past to be represented by a single particle, i.e. they

will also suffer from degeneracy in the same way as parameters do. As a re-

sult, p
(
θ
∣
∣s0(i), . . . , sk(i), Z

k
)
will have bias and subsequently, the joint posterior

p
(
sk, θ

∣
∣Zk

)
will be poorly approximated.

This problem is avoided by using a RBMPF instead of a RBPF. By replacing

Tk with Θ in (3.18), we obtain the approximation

p
(
sk, θ

∣
∣Zk

)
≈

NP∑

i=1

wk(i)δ(sk − sk(i))p
(
θ
∣
∣sk(i), Z

k
)

(3.20)

which depends only on the particle-approximated filtering density

p
(
sk
∣
∣Zk

)
≈

NP∑

i=1

wk(i)δ(sk − sk(i)) (3.21)

instead of the particle approximation of p(s0, . . . , sk|Zk). In order to devise a

practical implementation of the RBMPF, we must be able to:

1. Approximate p
(
sk
∣
∣Zk

)
using a SMC method;

2. Calculate or approximate p
(
θ
∣
∣sk(i), Z

k
)
using a non-SMC method.

This task is definitely not trivial. Lindsten et al. [2012] proposed an approx-

imation of p
(
θ
∣
∣sk(i), Z

k
)
, which however could only be applied to structured

models where Θ has a linear-Gaussian relationship with Sk.

3.3 The Discrete RBMPF (D-RBMPF)

Our first proposed version of the RBMPF assumes that the parameter Θ is dis-

crete. If that is not the case, we can naturally perform discretization of the pa-

rameter space, although for computational reasons, this will limit the usefulness

59



3. ONLINE BAYESIAN PARAMETER ESTIMATION USING THE
RAO-BLACKWELLIZED MARGINAL PARTICLE FILTER

of the method to low dimensionality parameters. We call this method Discrete

RBMPF (D-RBMPF).

Let us assume that Θ assumes values in a set of discrete points Π. With

p
(
sk
∣
∣Zk

)
approximated by the set of particles {sk(i), wk(i)}NP

i=1, an expectation

of the form E
[
g(Sk,Θ)

∣
∣Zk

]
, for any function g of Sk and Θ, would be given by

E
[
g(Sk,Θ)

∣
∣Zk

]
≈

NP∑

i=1

wk(i)
∑

θ∈Π

p
(
θ
∣
∣sk(i), Z

k
)
g(sk(i), θ) (3.22)

and the output of the filter at each time step k consists of

{

sk(i), wk(i),
{
p(θ|sk(i), Zk)

}

θ∈Π

}NP

i=1
. (3.23)

As we see from (3.23), each iteration of the filter must have two steps: one

to obtain {sk(i), wk(i)}NP

i=1, and another one to obtain
{{

p(θ|sk(i), Zk)
}

θ∈Π

}NP

i=1
.

We will now derive each of these two steps.

3.3.1 Obtaining the particle states/weights (MPF step)

In order to obtain {sk(i), wk(i)}NP

i=1, we will derive a modified version of the MPF

(just as the RBPF uses a modified PF). Observe first that

p
(
sk
∣
∣Zk

)

=

∫ ∫

p
(
sk, sk−1, θ

∣
∣Zk

)
dsk−1dθ

=

∫ ∫
p
(
zk
∣
∣sk, sk−1, θ, Z

k−1
)

p (zk |Zk−1 )
p
(
sk, sk−1, θ

∣
∣Zk−1

)
dsk−1dθ

=

∫ ∫
p
(
zk
∣
∣sk, sk−1, θ, Z

k−1
)
p
(
sk
∣
∣sk−1, θ, Z

k−1
)

p (zk |Zk−1 )
p
(
sk−1, θ

∣
∣Zk−1

)
dsk−1dθ.

(3.24)
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From (3.1), we have

p
(
zk
∣
∣sk, sk−1, θ, Z

k−1
)
= p (zk |sk, θ ) (3.25)

p
(
sk
∣
∣sk−1, θ, Z

k−1
)
= p (sk |sk−1, θ ) (3.26)

and therefore from (3.24)

p(sk|Zk) =

∫ ∫
p(zk|sk, θ)p(sk|sk−1, θ)

p (zk |Zk−1 )
p
(
sk−1, θ

∣
∣Zk−1

)
dsk−1dθ. (3.27)

By defining

K(sk, sk−1, θ, zk) , p(zk|sk, θ)p(sk|sk−1, θ) (3.28)

we have

p(sk|Zk) =

∫ ∫
K(sk, sk−1, θ, zk)p

(
sk−1, θ

∣
∣Zk−1

)

p (zk |Zk−1 )
dsk−1dθ

=
E
[
K(sk, Sk−1,Θ, zk)

∣
∣Zk−1

]

p (zk |Zk−1 )
. (3.29)

Now, observe that a conditional expectation of the form E
[
g(Sk)

∣
∣Zk

]
(where

g is an arbitrary function) is given by

E
[
g(Sk)

∣
∣Zk

]
=

∫

g(sk)p(sk|Zk)dsk

=

∫

g(sk)
E
[
K(sk, Sk−1,Θ, zk)

∣
∣Zk−1

]

p (zk |Zk−1 )
dsk

=

∫

g(sk)
E
[
K(sk, Sk−1,Θ, zk)

∣
∣Zk−1

]

p (zk |Zk−1 ) q (sk |Zk )
q
(
sk
∣
∣Zk

)
dsk

(3.30)

where q
(
sk
∣
∣Zk

)
is an appropriate proposal density for Sk. If we generate NP

i.i.d. particle states sk(i) by sampling from q
(
sk
∣
∣Zk

)
, E

[
g(Sk)

∣
∣Zk

]
may be
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approximated by

E
[
g(Sk)

∣
∣Zk

]
≈

NP∑

i=1

g(sk(i))wk(i) (3.31)

where the particle weights are given by

wk(i) =
E
[
K(sk(i), Sk−1,Θ, zk)

∣
∣Zk−1

]

NPp (zk |Zk−1 ) q (sk(i) |Zk )
. (3.32)

To calculate (3.32), we approximate the numerator of (3.32) using (3.22), i.e.

we use the output (3.23) produced at the previous iteration k − 1:

E
[
K(sk(i), Sk−1,Θ, zk)

∣
∣Zk−1

]

≈
NP∑

j=1

wk−1(j)
∑

θ∈Π

p
(
θ
∣
∣sk−1(j), Z

k−1
)
K(sk(i), sk−1(j), θ, zk). (3.33)

Observe that the term NPp
(
zk
∣
∣Zk−1

)
in (3.32) becomes irrelevant as it does

not depend on the particle state sk(i), and hence can be taken in account by

normalizing the weights. Note also that unlike the SIR particle filter, the MPF

does not contain a resampling step. A proposal density that is particularly easy to

implement is the “blind proposal density”, i.e. to perform importance sampling

disregarding the last observation zk. This can be accomplished by making

q
(
sk
∣
∣Zk

)
= p

(
sk
∣
∣Zk−1

)

= E
[
p(sk|Sk−1,Θ)

∣
∣Zk−1

]
(3.34)

which, from (3.22), can be approximated as

q
(
sk
∣
∣Zk

)
≈

NP∑

j=1

wk−1(j)
∑

θ∈Π

p
(
θ
∣
∣sk−1(j), Z

k−1
)
p (sk |sk−1(j), θ ) . (3.35)

For a given particle i, in order to sample from (3.35), one can thus take the

following steps:

1. Obtain a sample sk−1(i) from the pmf (wk−1(j))
NP

j=1. Using a resampling
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algorithm, such as the systematic resampling algorithm described in Section

2.1.2.3, it is possible to obtain NP samples, one for each i = 1, . . . , NP ;

2. Obtain a sample θk(i) from the pmf
(
p
(
θ
∣
∣sk−1(i), Z

k−1
))

θ∈Π
;

3. Finally, obtain a sample sk(i) from the pdf p (sk |sk−1(i), θ(i)).

For alternative importance sampling strategies applicable to a MPF, refer to

Klaas et al. [2005]. It is maybe possible to replace the MPF with a regular SIR PF

in this step, although the consequences of this replacement in the mathematical

validity of the algorithm require further investigation.

3.3.2 Obtaining the parameter conditional probabilities

(discrete step)

Now we describe how to obtain
{{

p(θ|sk(i), Zk)
}

θ∈Π

}NP

i=1
given the particle cloud

{sk(i), wk(i)}NP

i=1. First, observe that, for a given particle i

p
(
θ
∣
∣sk(i), Z

k
)
=

p
(
θ, sk(i)

∣
∣Zk

)

p (sk(i) |Zk )

=

∫
p
(
θ, sk(i), sk−1

∣
∣Zk

)
dsk−1

p (sk(i) |Zk )

=

∫
p(zk|sk(i), θ)p(sk(i)|sk−1, θ)

p (zk |Zk−1 ) p (sk(i) |Zk )
p
(
sk−1, θ

∣
∣Zk−1

)
dsk−1

=

∫
K(sk(i), sk−1, θ, zk)p

(
θ
∣
∣sk−1, Z

k−1
)

p (zk |Zk−1 ) p (sk(i) |Zk )
p
(
sk−1

∣
∣Zk−1

)
dsk−1

(3.36)

where K(sk, sk−1, θ, zk) is defined by (3.28). By using the algorithm output ob-

tained at the previous iteration k − 1, we can approximate (3.36) by

p
(
θ
∣
∣sk(i), Z

k
)
≈

NP∑

j=1

wk−1(j)K(sk(i), sk−1(j), θ, zk)

p (zk |Zk−1 ) p (sk(i) |Zk )
p
(
θ
∣
∣sk−1(j), Z

k−1
)

(3.37)

where we note that the term p
(
zk
∣
∣Zk−1

)
p
(
sk(i)

∣
∣Zk

)
is irrelevant as it does not

depend on θ, and hence can be taken into account by normalizing the parameter
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conditional probabilities.

3.3.3 D-RBMPF algorithm

Initialization:

1. For each particle i = 1, . . . , NP

(a) Sample s0(i) ∼ p(s0)

(b) Make w0(i) =
1

NP

(c) For each θ ∈ Π, set p(θ|s0(i))

At every time step k = 1, 2, . . .:

1. For each particle i = 1, . . . , NP

(a) Perform particle importance sampling by drawing

sk(i) ∼ q
(

sk

∣
∣
∣Zk

)

(3.38)

where q
(
sk
∣
∣Zk

)
is a proposal density

(b) Calculate the unnormalized particle weight according to

wk(i) =
E
[
K(sk(i), Sk−1,Θ, zk)

∣
∣Zk−1

]

q (sk(i) |Zk )
(3.39)

where the expectation in the numerator is calculated using (3.33)

(c) For each θ ∈ Π, compute the unnormalized parameter conditional proba-

bility according to

p
(

θ
∣
∣
∣sk(i), Z

k
)

=

NP∑

j=1

wk−1(j)K(sk(i), sk−1(j), θ, zk)p
(

θ
∣
∣
∣sk−1(j), Z

k−1
)

(3.40)

(d) Normalize the conditional parameter probabilities according to

p
(

θ
∣
∣
∣sk(i), Z

k
)

=
p
(
θ
∣
∣sk(i), Z

k
)

∑

θ∗∈Π p (θ∗ |sk(i), Zk )
(3.41)
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2. Normalize the particle weights according to

wk(i) =
wk(i)

∑NP

j=1wk(j)
, i = 1, . . . , NP (3.42)

3.3.4 A special case

If p(zk|sk, θ) = p(zk|sk), the algorithm described in Section 3.3.3 can be simplified.

In this case, (3.39) becomes

wk(i) =
p(zk|sk(i))E

[
p(sk|Sk−1,Θ)

∣
∣Zk−1

]

q (sk(i) |Zk )
(3.43)

and hence, if we use blind importance sampling (3.34) for the particles, we have

wk(i) = p(zk|sk(i)) (3.44)

i.e. the weights are simply proportional to the likelihoods (as in a SIR PF using

blind importance sampling). An example of this special case is the problem of tar-

get tracking with target type identification (where the parameter Θ is the target

type) using sensors that measure only the target’s position and other kinematic

properties.

3.3.5 Computational complexity

The blind importance sampling scheme (3.34) has a computational complexity of

O(NP |Π|). The type of resampling used in blind importance sampling does not

affect complexity, as all well-known resampling methods have a computational

complexity of O(NP ) (see Hol et al. [2006]). The calculation of weights and

the calculation of parameter conditional probabilities have both a complexity of

O(N2
P |Π|). Hence the overall complexity of the D-RBMPF is O(N2

P |Π|).
In the special case where p(zk|sk, θ) = p(zk|sk), the complexity of the cal-

culation of weights goes down to O(NP ). However, since the complexity of the

calculation of parameter conditionals is not changed, the overall complexity of

the D-RBMPF is still O(N2
P |Π|).

The main loop of the algorithm (steps (3.38)–(3.41)) may be parallelized, by

65



3. ONLINE BAYESIAN PARAMETER ESTIMATION USING THE
RAO-BLACKWELLIZED MARGINAL PARTICLE FILTER

dividing the particles among the processing nodes. With each processing node

processing at most one particle, the maximum complexity per node would be

O(NP |Π|).

3.4 The Monte Carlo RBMPF (MC-RBMPF)

Our second proposed algorithm based on the RBMPF does not depend on a dis-

cretization of the parameter space, and therefore, can be useful for problems

with high dimensional parameters. The algorithm consists of using a MPF

to estimate p
(
sk
∣
∣Zk

)
, and a (non-Sequential) Monte Carlo (MC) estimator

for p
(
θ
∣
∣sk(i), Z

k
)
. We call this method Monte Carlo RBMPF (MC-RBMPF).

Though we use, as in the LWPF, a Gaussian density to approximate the param-

eter conditional p
(
θ
∣
∣sk(i), Z

k
)
, we shall see later that the proposed method is

intrinsically different from the LWPF.

In the MC-RBMPF, we assume that expectations taken over p
(
θ
∣
∣sk(i), Z

k
)

have no closed form expressions. In particular, we use Monte Carlo sampling, i.e.

we generateNS weighted samples {θk(i, j), vk(i, j)}NS

j=1 from p
(
θ
∣
∣sk(i), Z

k
)
, where

vk(i, j) is the sample weight and θk(i, j) is the sample value. An expectation of the

form E
[
g(Sk,Θ)

∣
∣Zk

]
, for any function g of Sk and Θ, may then be approximated

as

E
[
g(Sk,Θ)

∣
∣Zk

]
≈

NP∑

i=1

wk(i)

NS∑

m=1

vk(i,m)g(sk(i), θk(i,m)) (3.45)

and the output of the filter at each time step k consists of

{

sk(i), wk(i), {θk(i,m), vk(i,m)}NS

m=1

}NP

i=1
. (3.46)

We will henceforth refer to {θk(i,m), vk(i,m)}NS

m=1 as the “sub-particles” of

each particle (sk(i), wk(i)). This is a convenient abuse of notation; it should be

clear to the reader that they are not akin to particles produced by a particle filter.

This is because they are generated by a Monte Carlo-based and not by a Sequen-

tial Monte Carlo method, as in our scheme, the samples {θk(i,m), vk(i,m)}NS

m=1

66



3. ONLINE BAYESIAN PARAMETER ESTIMATION USING THE
RAO-BLACKWELLIZED MARGINAL PARTICLE FILTER

are not propagated to the next iteration of the algorithm.

As we see from (3.46), each iteration of the filter must have two steps: one to

obtain {sk(i), wk(i)}NP

i=1, and another one to obtain
{

{θk(i,m), vk(i,m)}NS

m=1

}NP

i=1
.

We will now derive each of these two steps.

3.4.1 Obtaining the particle states/weights (MPF step)

The derivation of the MPF step of the MC-RBMPF is similar to the derivation

of the MPF step of the D-RBMPF. Let us look at (3.32), the expression that we

obtained for the particle weight:

wk(i) =
E
[
K(sk(i), Sk−1,Θ, zk)

∣
∣Zk−1

]

NPp (zk |Zk−1 ) q (sk(i) |Zk )
. (3.47)

In the MC-RBMPF, the numerator is approximated using (3.45). By using

the output (3.46) produced at the previous iteration k − 1, we have

E
[
K(sk(i), Sk−1,Θ, zk)

∣
∣Zk−1

]

≈
NP∑

j=1

wk−1(j)

NS∑

m=1

vk−1(j,m)K(sk(i), sk−1(j), θk−1(j,m), zk). (3.48)

The blind proposal density (3.34), using (3.45), can be approximated as

q
(
sk
∣
∣Zk

)
≈

NP∑

j=1

wk−1(j)

NS∑

m=1

vk−1(j,m)p (sk |sk−1(j), θk−1(j,m)) . (3.49)

For a given particle i, in order to sample from (3.49), one can thus take the

following steps:

1. Obtain a sample sk−1(i) from the pmf (wk−1(j))
NP

j=1. As for the D-RBMPF,

a resampling algorithm can be used in this step;

2. Obtain a sample θ(i) from the pmf (vk−1(i,m))NS

m=1;

3. Finally, obtain a sample sk(i) from the pdf p (sk |sk−1(i), θ(i)).
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3.4.2 Obtaining the sub-particle states/weights (MC step)

Now we describe how to obtain
{

{θk(i,m), vk(i,m)}NS

m=1

}NP

i=1
given the particle

cloud {sk(i), wk(i)}NP

i=1. Recall that

{θk(i,m), vk(i,m)}NS

m=1 , i = 1, . . . , NP

is assumed to be a set of samples from p
(
θ
∣
∣sk(i), Z

k
)
. In order to obtain these

samples, let us consider again approximation (3.37) of p
(
θ
∣
∣sk(i), Z

k
)
, that we

obtained when deriving the D-RBMPF:

p
(
θ
∣
∣sk(i), Z

k
)
≈

NP∑

j=1

wk−1(j)K(sk(i), sk−1(j), θ, zk)

p (zk |Zk−1 ) p (sk(i) |Zk )
p
(
θ
∣
∣sk−1(j), Z

k−1
)
. (3.50)

How to approximate the term p
(
θ
∣
∣sk−1(j), Z

k−1
)
? We know that each set of

sub-particles produced at the previous iteration, i.e.

{θk−1(j,m), vk−1(j,m)}NS

m=1 , j = 1, . . . , NP ,

consists of a set of samples of p
(
θ
∣
∣sk−1(j), Z

k−1
)
. A “naive” approximation of

this term would then be the Sequential Monte Carlo approximation, i.e.

NS∑

m=1

vk−1(j,m)δ (θ − θk−1(j,m))

which we can promptly recognize as a bad choice. It would cause the sup-

port of the approximated p
(
θ
∣
∣Zk−1

)
to be restricted to the sub-particle values

{

{θk−1(j,m)}NS

m=1

}NP

j=1
. The support of the approximated p

(
θ
∣
∣Zk

)
would hence

be also restricted to the same set of sub-particle values, leading to the same

degeneracy phenomenon described in Section 3.2.1.

We propose instead to fit an empirical, “easy-to-sample” probability density

to the set of points given by {θk−1(j,m), vk−1(j,m)}NS

m=1. A practical (but not the
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only) choice is a Gaussian probability density

N

(

θ; θ̂k−1(j), Pk−1(j)
)

,

with first and second moments matching those of the sub-particle approximation,

i.e. with mean and covariance given by

θ̂k−1(j) =

NS∑

m=1

vk−1(j,m)θk−1(j,m), (3.51)

Pk−1(j) =

NS∑

m=1

vk−1(j,m)
(

θk−1(j,m)− θ̂k−1(j)
)(

θk−1(j,m)− θ̂k−1(j)
)T

.

(3.52)

Using the aforementioned empirical density, (3.50) becomes

p
(
θ
∣
∣sk(i), Z

k
)
≈

NP∑

j=1

wk−1(j)K(sk(i), sk−1(j), θ, zk)N
(

θ; θ̂k−1(j), Pk−1(j)
)

p (zk |Zk−1 ) p (sk(i) |Zk )
.

(3.53)

We now need, for each particle i, to obtain a set of weighted samples (“sub-

particles”) {θk(i,m), vk(i,m)}NS

m=1 from p
(
θ
∣
∣sk(i), Z

k
)
approximated as (3.53).

This is accomplished, for instance, by importance sampling. First, we sample

(θk(i,m))NS

m=1 from some appropriate proposal density q
(
θ
∣
∣sk(i), Z

k
)
. We then

calculate the unnormalized sub-particle weights using the proportionality

vk(i,m) ∝
NP∑

j=1

wk−1(j)K(sk(i), sk−1(j), θk(i,m), zk)

q (θk(i,m) |sk(i), Zk )
N

(

θk(i,m); θ̂k−1(j), Pk−1(j)
)

(3.54)

and then normalize them. One proposal density that is easy to implement is

given by

q
(
θ
∣
∣sk(i), Z

k
)
=

NP∑

j=1

wk−1(j)N
(

θ; θ̂k−1(j), Pk−1(j)
)

(3.55)
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which does not consider, however, neither the particle value sk(i) nor the last

observation zk. To sample from this proposal density, we may:

1. Obtain a sample
(

θ̂k−1(i), Pk−1(i)
)

from the pmf (wk−1(j))
NP

j=1. For all NP

particles and NS × NP sub-particles, we may accomplish step this by per-

forming NS resampling steps. Here it is better to avoid the systematic

resampling algorithm, by using, for instance, the multinomial resampling

algorithm (see Hol et al. [2006]). The reason is that systematic resampling

will result in similar choices of particles for each m = 1, . . . , NS;

2. Sample θ(i,m) from N

(

θ; θ̂k−1(i), Pk−1(i)
)

.

Similar to what happens in the importance sampling step of a particle filter,

if the proposal q
(
θ
∣
∣sk(i), Z

k
)
is far more heavy-tailed than the target density

p
(
θ
∣
∣sk(i), Z

k
)
, importance sampling may result in sub-particle weights with large

variance. In this situation, many sub-particles will have weights close to zero,

such that they will be effectively “wasted”. A solution to this problem is to use

proposal density closer to p
(
θ
∣
∣sk(i), Z

k
)
. If this is not possible, an alternative

solution, also considered in PF literature (see Doucet et al. [2001]; Gilks and

Berzuini [2001]), is to employ MCMC methods (such as the Metropolis-Hastings

algorithm) as a replacement or in addition to importance sampling.

The reader may have noticed that in the RBMPF, obtaining samples of Θ from

(3.53) (which approximates the conditional density p
(
θ
∣
∣sk(i), Z

k
)
) is similar to

obtaining samples as in (3.14) when one uses a LWPF. Although in the RBMPF,

we do not explicitly add artificial dynamics to the system model, the method relies

on Gaussian probability densities, and therefore, (3.53) may be considered some

sort of “artificial dynamics” for Θ. However, in comparison with the LWPF, the

RBMPF approximation of p
(
θ
∣
∣sk(i), Z

k
)
is non-parametrized and numerical, i.e.

based on multiple samples of Θ associated with each particle i, and the covariance

of Θ given sk(i) and Zk is allowed to be different for each particle.

3.4.3 MC-RBMPF algorithm

Initialization:

1. For each particle i = 1, . . . , NP
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(a) Sample s0(i) ∼ p(s0)

(b) Make w0(i) =
1

NP

(c) For each sub-particle m = 1, . . . , NS

i. Sample θ0(i,m) ∼ p(θ|s0(i))
ii. Make v0(i,m) = 1

NS

At every time step k = 1, 2, . . .:

1. For each particle i = 1, . . . , NP

(a) Perform particle importance sampling by drawing

sk(i) ∼ q
(

sk

∣
∣
∣Zk

)

(3.56)

where q
(
sk
∣
∣Zk

)
is a proposal density

(b) Calculate the unnormalized particle weight according to

wk(i) =
E
[
K(sk(i), Sk−1,Θ, zk)

∣
∣Zk−1

]

q (sk(i) |Zk )
(3.57)

where the expectation in the numerator is calculated using (3.48)

(c) Calculate

θ̂k−1(i) =

NS∑

m=1

vk−1(i,m)θk−1(i,m) (3.58)

Pk−1(i) =

NS∑

m=1

vk−1(i,m)
(

θk−1(i,m)− θ̂k−1(i)
)(

θk−1(i,m)− θ̂k−1(i)
)T

(3.59)

2. Normalize the particle weights according to

wk(i) =
wk(i)

∑NP

j=1wk(j)
, i = 1, . . . , NP (3.60)

3. For each particle i = 1, . . . , NP

(a) For each sub-particle m = 1, . . . , NS
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i. Perform sub-particle importance sampling by drawing

θk(i,m) ∼ q
(

θ
∣
∣
∣sk(i), Z

k
)

(3.61)

where q
(
θ
∣
∣sk, Z

k
)
is a proposal density

ii. Calculate the unnormalized sub-particle weight according to

vk(i,m) =

NP∑

j=1

wk−1(j)

q (θk(i,m) |sk(i), Zk )
K(sk(i), sk−1(j), θk(i,m), zk)

×N

(

θk(i,m); θ̂k−1(j), Pk−1(j)
)

(3.62)

(b) Normalize the subparticle weights according to

vk(i,m) =
vk(i,m)

∑NS

n=1 vk(i, n)
, m = 1, . . . , NS (3.63)

3.4.4 Computational complexity

The computational complexity of the MC-RBMPF is obtained similarly to the

D-RBMPF, replacing the cardinality of the set of discrete points (|Π|) with the

number of sub-particles NS. Like in the D-RBMPF, the special case where

p(zk|sk, θ) = p(zk|sk) simplifies the algorithm, but does not reduce overall com-

plexity.

Table 3.1 shows a comparison of computational complexity between the SIR

PF and the MC-RBMPF. The D-RBMPF is not shown in the table since as

already mentioned, its only replaces NS with |Π| in complexity. Likewise, the

SIR LWPF mentioned in Section 3.2.2 has the same complexity as the SIR PF.

On obtaining these complexities, blind importance sampling is assumed to be used

whenever applicable, and the proposal given by (3.55) is used for the sub-particle

importance sampling.

We can see that the D-RBMPF and the MC-RBMPF have higher compu-

tational cost than the SIR PF and the SIR LWPF. This is both because the

RBMPF is based on the marginal particle filter (which as shown in Klaas et al.

[2005], has complexity quadratic on the number of particles), and because both

the D-RBMPF and the MC-RBMPF associate multiple values of Θ with each par-
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Table 3.1: Comparison of computational complexity between algorithms

Step SIR PF MC-RBMPF
SIR PF

(parallelized)

MC-RBMPF

(parallelized)

Particle importance

sampling
O(NP ) O(NPNS) O(1) O(NPNS)

Particle weight

calculation
O(NP ) O(N2

PNS) O(1) O(NPNS)

Sub-particle

importance sampling
— O(NPNS) — O(NPNS)

Sub-particle

weight calculation
— O(N2

PNS) — O(NPNS)

Resampling O(NP ) — O(NP ) —

Overall O(NP ) O(N2
PNS) O(NP ) O(NPNS)

ticle i, in order to provide a numerical approximation of the conditional density

p
(
θ
∣
∣sk(i), Z

k
)
.

However, like the D-RBMPF, the MC-RBMPF has nice parallelization prop-

erties. The last two columns of Table 3.1 show the complexity of the parallelized

versions of the SIR PF and the MC-RBMPF. It corresponds to the complexity

for a single processing node, in case NP processors were available. Since resam-

pling cannot be easily made concurrent (see Bolić et al. [2005]), we assume that

there is no reduction of complexity for the resampling procedures involved in all

algorithms. As one can see, this causes the parallelized SIR PF (and the SIR

LWPF) to have the same overall complexity as their non-parallelized counter-

parts, whereas with the parallelized MC-RBMPF, it is possible to reduce the

overall complexity by assigning each particle to each processing node during the

algorithm main loop.
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3.5 Simulation - Turn rate estimation

3.5.1 Problem description

In the first simulation scenario, we will consider the D-RBMPF applied to the

target tracking problem of estimating the turn rate of a target performing a

constant turn. In this problem, we consider a moving target, that moves according

to the constant turn model described in Rong Li and Jilkov [2003]. The time-

varying state of the target is given by Sk = [P x
k , P

y
k , V

x
k , V

y
k ]

T , where x and y

denote the Cartesian coordinates, (P x
k , P

y
k ) corresponds to the position (with

realizations denoted by (pxk, p
y
k)) and (V x

k , V
y
k ) corresponds to the velocity (with

realizations denoted by (vxk , v
y
k)). The parameter is the turn rate Θ, which will

always be expressed in ◦/second. The target is assumed to be observed by a

sensor, that produces measurements according to the following observation model:

p(zk|xk, θ) = p(zk|xk) = N

(

zk;

[

pxk

pyk

]

,

[

2.25 0

0 2.25

])

(3.64)

i.e. we have the special case described in Section 3.3.4.

3.5.2 Simulation description

For the given problem, we compare the D-RBMPF with the SIR LWPF described

in Section 3.2.2, tuned using different values of the smoothing parameter h. Since

both are coupled Bayesian techniques, they can be used to obtain both estimates

and variances of Θ and Sk as they approximate the joint posterior p
(
sk, θ

∣
∣Zk

)
.

In the scenario, the true value of Θ is θ = 5 and the power spectral density of

the process noise (see Rong Li and Jilkov [2003]) is given by σ2
w = 36. The target

trajectory is shown in Fig. 3.1. We perform a Monte Carlo simulation with 25

runs, generating a new sequence of observations at each run.

The compared algorithms are the D-RBMPF (with NP = 1, 000 and Π =

{−9,−7, . . . , 7, 9}) and the SIR LWPF with NP = 1, 000, using the values h =

0.02, 0.1 and 0.5 for the smoothing parameter. We assume the following prior
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Figure 3.1: Target trajectory for the turn rate estimation scenario

densities for Sk and Θ:

p(s0) = p(s0|θ) = N
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,

p(θ) = p(θ|s0) = N(θ; 0.01, 36)

where for the D-RBMPF, we consider a discretized version of p(θ), obtained by

constraining the support of Θ to the set of discrete points Π and normalizing the

values of the pdf.

For all implemented filters, blind importance sampling is used. We evaluate

performance using two criteria: the Root Mean Square Errors (RMSE) of the

Minimum Mean Square Error (MMSE) estimates and the Normalized Estimation

Errors Squared (NEES) (Bar-Shalom et al. [2001]) obtained from the MMSE

estimates and the variances. The RMSE of some scalar quantity Qk (e.g. an
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entry of the state or parameter vectors) are given by

ǫRMSE
k =

√
√
√
√ 1

NR

NR∑

m=1

(q̂k(m)− qk(m))2 (3.65)

where NR is the number of Monte Carlo runs, and for the m-th run, qk(m) is the

true value of the quantity and q̂k(m) is its MMSE estimate calculated using the

output of the filter. The NEES of the same quantity are given by

ǫNEES
k =

1

NR

NR∑

m=1

(q̂k(m)− qk)
2

σ2
qk
(m)

(3.66)

where σ2
qk
(m) is the variance of Qk (also calculated using the output of the filter).

Note that for the D-RBMPF, both the MMSE estimate and the variance can

be calculated in a straightforward manner by using (3.22). The NEES are a

performance measure of the filter’s statistical consistency, i.e. the consistency

between filter-calculated variances and actual estimation errors. In accordance

to this thesis’ goal of characterization of uncertainty in Bayesian estimation, it is

interesting for us to use the NEES as a performance criterion in addition to the

RMSE.

Generally, the NEES are compared with the bounds of an acceptance region

(see Bar-Shalom et al. [2001]). For instance, a 95% acceptance region corresponds

to the region that has a 95% chance of containing the NEES of some estimator, in

the assumption that the estimator is consistent and that the underlying distribu-

tion (in our case, the marginal distributions of the entries of the state vector and

of the parameter) is Gaussian. In theory, NEES higher than the upper bound

indicate that the variances are underestimated (i.e. actual errors are higher than

indicated by the variances), and when lower than the lower bound, indicate that

the variances are overestimated. However, since these bounds are valid only in

the Gaussian assumption, which is clearly not our case, they are more useful to

have a notion of statistical consistency, rather than to make hard conclusions

about it.

76



3. ONLINE BAYESIAN PARAMETER ESTIMATION USING THE
RAO-BLACKWELLIZED MARGINAL PARTICLE FILTER

3.5.3 Results

Although we have calculated the RMSE and NEES for both state and parameter,

we only show the performance metrics for the parameter, as in this example, state

estimation performance is much less affected by the choice of algorithm. Let us

then first take a look at the RMSE of the turn rate estimates, shown in Fig.

3.2(a). The D-RBMPF obtained by far the best results, followed by the LWPFs

with h = 0.1, h = 0.5 and h = 0.02 respectively. The NEES of the turn rate

estimate are shown in Fig. 3.2(b), together with the upper and lower bounds of

the 95% acceptance region. As we can see, for all filters, the NEES were most of

the time above the upper bounds, which indicates that filter-calculated variances

tended to underestimate the actual estimation errors. The D-RBMPF, however,

has lead to much lower NEES than the LWPFs.

In order to find the cause of the high NEES, we give a look at the number of

“outlier” estimates produced by each of the algorithms. We classify an estimate

θ̂k as an “outlier” if its error w.r.t. the true value of θ is more than 3
√

σ2
θk

(where

σ2
θk

is the filter-calculated variance of Θ). The rate of outliers is given by the

number of outliers divided by the number of Monte Carlo runs, and shown in

Fig. 3.3.

From Fig. 3.3, we can see that almost all estimates produced by the LWPFs

were outlier estimates. In the D-RBMPF, this happened only for a small per-

centage of the runs. For this subset of runs, however, we verified that the NEES

were exceptionally high, leading to the result in Fig. 3.2(b).

Overall, for this problem, the D-RBMPF has been shown successful on reduc-

ing the estimation bias caused by methods based on artificial dynamics, leading

to both smaller estimation errors and more statistically consistent estimates (i.e.

better characterization of estimation uncertainty) than the LWPF for different

values of the smoothing parameter h. The results also illustrate the advantage

of using a non-parametric numerical approximation for the conditional density

p
(
θ
∣
∣sk(i), Z

k
)
, as the performance of the LWPF in terms of RMSE seems to be

very sensitive to the choice of the smoothing parameter, with h = 0.1 being the

choice that has lead to best performance for this problem.

Yet, the performance of the D-RBMPF in terms of statistical consistency
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Figure 3.2: Turn rate estimation – results
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Figure 3.3: Turn rate estimation – ratio of outlier estimates

(NEES) was not completely satisfactory, with a small subset of the runs lead-

ing to highly underestimated variances. This suggests that a larger number of

particles and/or a larger number of discrete points is needed, or perhaps other

improvements in the algorithm.

3.5.4 Trade-off between computational cost and perfor-

mance

In the previous experiment, we did not consider the difference in computational

complexity between the D-RBMPF and the LWPF. However, from Section 3.3.5,

we know that the D-RBMPF is computationally more expensive than the LWPF.

Even if parallelization is possible, the D-RBMPF is at least |Π| times more costly

than the LWPF. Therefore, it is worthwhile to verify which algorithm offers a

better trade-off between computational cost and performance, by using a LWPF

with a larger number of particles.

We then repeat the same simulation described in Section 3.5.2, but we test

only the D-RBMPF and the SIR LWPF with h = 0.1 (the value of h which lead
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to best results in the previous experiment), with the LWPF (only) using |Π| = 10

times more particles, i.e. 10, 000 particles. The results, in terms of RMSE and

ratio of outliers, are shown in Fig. 3.4.

We can see that using more particles in the LWPF led to a significant im-

provement in terms of RMSE, albeit its performance was still inferior to the

D-RBMPF. In terms of ratio of outliers, increasing the number of particles of the

LWPF led to some improvement, but value of the metric was still much higher

than for the D-RBMPF. Hence, in terms of characterization of uncertainty, the

D-RBMPF produced seems to fare better than just using a LWPF with a large

number of particles.

3.6 Simulation - Stochastic volatility estimation

3.6.1 Problem description

In the second simulation scenario, we apply the MC-RBMPF to the problem of

stochastic volatility estimation from stock data using the Heston model (Heston

[1993]). More precisely, we consider a discretized version of this model (using the

Euler scheme), described in Aihara et al. [2009]:

Sk =

(

1 +
1

2
ξρ∆t

)−1
{

Sk−1 + κ

(
κ′

κ
− Sk−1

)

∆t+ ξρ
1

2
Sk−1∆t

+ ξ
√

Sk−1

√

1− ρ2∆Z̃k + ξρ
√

Sk−1∆Bk

}

, (3.67)

Zk = Zk−1 +

(

µS − 1

2
Sk

)

∆t+
√

Sk−1∆Bk (3.68)

where ∆t is the time interval between k − 1 and k, and ∆Z̃k and ∆Bk are

i.i.d. sequences of standard normal variables and the sequences themselves are

independent. In this model the state to be estimated is the stochastic volatility

process Sk, based on the observations Zk (computed from the observed stock

prices). The unknown parameter Θ is the vector Θ = [κ, κ′, ξ, µS, ρ]
T , where,

for the sake of simplicity, we use the same notations for the individual entries of
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Figure 3.4: Turn rate estimation – results for the LWPF with 10 times more
particles
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vector Θ and their realizations.

Note that this system model is more general than the more commonly used

model given by (3.1), but it can be straightforwardly shown that the MC-RBMPF

can be applied to this model as well, by using:

• p(sk|sk−1, θ, zk−1) instead of p(sk|sk−1, θ) as the state transition density;

• p(zk|sk, sk−1, θ, zk−1) instead of p(zk|sk, θ) as the likelihood function.

These densities are given by

p(sk|sk−1, θ, zk−1) = N
(
sk;msk(sk−1, θ), σ

2
sk
(sk−1, θ)

)
(3.69)

p(zk|sk, sk−1, θ, zk−1) = N
(
zk;mzk(sk−1, θ, zk−1), σ

2
zk
(sk−1)

)
(3.70)

where

msk(sk−1, θ) =

(

1 +
1

2
ξρ∆t

)−1
(

sk−1 + κ

(
κ′

κ
− sk−1

)

∆t+
ξρ

2
sk−1∆t

)

σ2
sk
(sk−1, θ) =

(

1 +
1

2
ξρ∆t

)−2

ξ2sk−1∆t

mzk(sk−1, θ, zk−1) = zk−1 +

(

µS − 1

2
sk

)

∆t

σ2
zk
(sk−1) = sk−1∆t.

3.6.2 Simulation description

For this problem, we compare the MC-RBMPF with the SIR LWPF, again tuned

using different values of h. In our scenario, the true values of the parameters are

κ = 3, κ′ = 0.3, µS = 0.1, ρ = −0.2, ξ = 0.4, and the true initial state and the

initial observation are respectively given by s0 = 0.25 and z0 = 0. We perform

a Monte Carlo simulation with 25 runs, generating a new stochastic volatility

trajectory (s0, . . . , sf ) and sequence of observations Zf at each run, with f = 252

and ∆t = 1/252 (measured in years).

The compared algorithms are the MC-RBMPF (with NP = 400 and NS = 40)

and the SIR LWPF with NP = 400, using the values h = 0.02, 0.1 and 0.5 for
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the smoothing parameter. The filters assume that in the absence of observations,

the state and parameters are mutually independent, with priors given by

p(κ) = U(1, 9), p(κ′) = U(0.05, 0.4),

p(µS) = U(0.05, 0.5), p(ρ) = U(−0.5, 0),

p(ξ) = U(0.01, 0.91), p(s0) = N(0.25, 4 · 10−4).

For all implemented filters, blind importance sampling is used (the optimal

importance sampling scheme for this problem, described in Aihara et al. [2009],

does not result in significant improvement). We evaluate performance again using

the RMSE and the NEES, this time for both the state and the individual entries

of the parameter vector.

3.6.3 Results

First, let us take a look at the MMSE estimates of the states and parameters,

or more precisely at their RMSE, shown in Figs. 3.5. We can see that overall,

the RBMPF obtained the best parameter estimation performance in terms of

RMSE, leading to the smallest errors for the parameters κ, κ′ and ρ. It was

followed by the LWPF with h = 0.1, which had RMSE close to the RBMPF

for the parameters κ, µS and ξ. The LWPF with h = 0.02 and h = 0.5 had

good performance respectively for the parameters µS and ξ, but overall their

performance was worse than the other two filters. For the RMSE of the stochastic

volatility sk, the difference in the results is somehow difficult to observe (possibly

due to low parameter identifiability), but with a small margin of difference, the

RBMPF seems to have the smallest RMSE and the LWPF with h = 0.5 seems

to have the largest.

The NEES of the estimated state and parameters are shown in Figs. 3.6, to-

gether with the upper and lower bounds of the 95% acceptance region. We can see

that the RBMPF also leads to the best results in terms of NEES, with the metric

approximately inside the acceptance region for three of the parameters, and also

for the stochastic volatility sk. All the other filters have state and parameter

estimates quite above the upper bound of the acceptance region, indicating that
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Figure 3.5: Stochastic volatility estimation - RMSE results
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Figure 3.6: Stochastic volatility estimation - NEES results
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the filter-calculated variances tend to underestimate the actual estimation errors.

However, the LWPF with h = 0.1 has lead to noticeably less deviation from the

acceptance region that the LWPF with h = 0.02 or h = 0.5.

Again, the RBMPF has been shown to produce more accurate estimates and

better characterization of uncertainty than all LWPFs, and the performance of

the LWPF in terms of both RMSE and NEES has been shown to be sensitive to

the choice of the smoothing parameter. Again, h = 0.1 was the best choice of

parameter for the LWPF.

3.6.4 Trade-off between computational cost and perfor-

mance

As we did for the turn rate estimation problem, we will run another experiment

to analyze the trade-off between computational complexity and performance of

the tested algorithms. We then repeat the same simulation described in Section

3.6.2, but we test only the MC-RBMPF and the SIR LWPF with h = 0.1, with

the LWPF (only) using NS = 40 times more particles, i.e. 16, 000 particles. This

gives the SIR LWPF the same complexity of the (fully parallelized) MC-RBMPF

with NP = 400 and NS = 40.

The results, in terms of RMSE and NEES, are respectively shown in Fig.

3.7 and 3.8. For this experiment, the LWPF with h = 0.1 outperforms the

MC-RBMPF in terms of parameter estimation, leading to smaller RMSE for

three of the five parameters, and overall lower NEES (although the NEES was

lower than the lower bounds for some parameters, suggesting an overestimation

of variance). In terms of state estimation, the performance of the two algorithms

was quite similar. We can then say that for this scenario, the SIR LWPF with

h = 0.1 offers overall a better trade-off between computational complexity and

performance than the MC-RBMPF.

3.7 Conclusions and recommendations

In this chapter, we have proposed two novel joint and state parameter estimation

algorithms, more specifically, two new versions of the RBMPF, a technique that
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Figure 3.7: Stochastic volatility estimation - RMSE results for the LWPF with
40 times more particles
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Figure 3.8: Stochastic volatility estimation - NEES results for the LWPF with 40
times more particles
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combines a SMC filter with a non-sequential MC estimator. The proposed meth-

ods are general, in the sense that they do not require the underlying process and

observation model to have partly linear-Gaussian structure, and are designed to

mitigate the bias caused by the introduction of artificial dynamics, typical of on-

line Bayesian PF-based parameter estimation methods. The proposed algorithms

have also nice parallelization properties. By examining their performance in two

practical problems, we have seen that they can be an effective solution to online

joint state and parameter estimation, in particular when good characterization

of uncertainty is needed.

In comparison with the SIR LWPF, however, the proposed RBMPF algo-

rithms have higher computational cost. We have verified that depending on the

application, it might be more cost-effective to use a LWPF with a carefully cho-

sen h parameter and a large number of particles. It is therefore highly desirable

to find a RBMPF implementation with lower computational cost but still appli-

cable to highly general models. One idea is to replace the Monte Carlo-based

estimator used to approximate the conditional density p
(
θ
∣
∣sk(i), Z

k
)
in the MC-

RBMPF with a bank of parallel deterministic estimators (for instance, Extended

or Unscented Kalman Filters).

In addition, although we have tested the proposed algorithms only in online

parameter estimation context, there is no reason to believe that they cannot

be applied to off-line parameter estimation problems. For instance, to adapt the

MC-RBMPF for off-line processing, we could use higher numbers of particles/sub-

particles, MCMC steps to reduce the variance of sub-particle weights, and alterna-

tive empirical densities. As an example, if lower/upper bounds on the parameter

values are known, a truncated Gaussian empirical density might be a better choice

of empirical density than a Gaussian. Such adaptations are also interesting sub-

jects for future work. Finally, it is worthwhile investigating whether (and when)

the MPF step in the RBMPF can be replaced by a step of a SIR PF, which is

computationally cheaper. In the track labelling problem, which we will examine

in Chapter 4, we will see that this is certainly possible.
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Chapter 4

The problem of optimal Bayesian

track labelling in multi-target

tracking

In Multi-Target Tracking (MTT), the problem of assigning labels to tracks (track

labelling) is vastly covered in literature, but its exact mathematical formulation, in

terms of Bayesian statistics, has not been yet looked at in detail. Doing so would,

however, help us to better understand and tackle Bayes-optimal track labelling, as

well as some practical difficulties associated with the MTT problem, in particular,

the situation where targets move in close proximity with each other and thereafter

separate. In such situation, it is well-known that there is confusion on target

identities, also known as “mixed labelling”.

In this chapter, we rigorously formulate the probabilistic track labelling prob-

lem using Finite Set Statistics (FISST), showing how the multi-target posterior

density considering labels can be recursively calculated in a Bayesian manner. On

the basis of this density, we derive statistics associated with track labelling, with

sound physical interpretation, that can be used to quantify labelling uncertainty,

find the optimal track label assignment, and evaluate track labelling performance.

Computation of these labelling-related statistics is possible, in principle, us-

ing state-of-the-art multi-target tracking algorithms, including the Multi-target

Sequential Monte Carlo (M-SMC) and the Multiple Hypothesis Tracking (MHT)
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filters. In practice, however, it is well-known that these methods suffer from the

degeneracy phenomenon, causing them to underestimate uncertainty-related quan-

tities, like the probability of labelling error. To deal with this this problem, we also

propose, in this chapter, a new Sequential Monte Carlo algorithm for the multi-

target tracking and labelling problem – the Labelling Uncertainty-Aware Particle

Filter (LUA-PF) – and validate it using simulation.

4.1 Introduction

The track labelling problem is perhaps just as old as the multi-target tracking

problem itself. In the display of a radar operator, it is often necessary not only

to display the estimated position of the multiple objects (i.e. the tracks), but

also attribute a unique label to each track. Ideally, this track label should consis-

tently be associated with the same real-world object, enhancing the situational

awareness of the operator.

In practice, the feasibility of maintaining this label-to-target consistency de-

pends on observability conditions. One situation where this consistency is fre-

quently lost is after targets move in close proximity to each other. In this case,

after the separation, the measurements and initial information may not allow us

to precisely determine which target is which. Therefore, if required to make a

hard decision to assign labels to tracks, the tracking system will frequently make

wrong choices. This situation (with two targets as example) is illustrated in Fig.

4.1.

This situation where the available information allows more than one labelling

possibility is referred to as “mixed labelling” by Boers, Sviestins and Driessen

Boers et al. [2010]. In this situation, two questions – which form the main moti-

vation of this work – are highly relevant:

• Question 1: How does one optimally assign labels T1 and T2 to the two

tracks?

• Question 2: What is the probability that the assignment is incorrect, i.e.

that track swap has occurred? This probability may be useful to the op-

erator; for instance, when a decision is only acceptable if we have high
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Figure 4.1: Situation where assignment of labels to tracks is ambiguous
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confidence that a target is who it seems to be.

These two questions can be straightforwardly extended for situations involving

three or more targets. The problem, however, is that the questions are not

perfectly clear. For instance, what do we exactly mean by “probability of incorrect

labelling”? After all, tracks are only estimates of the true target states, and in

probabilistic sense, they almost never coincide. If the tracks are themselves not

“correct”, what shall we understand by “correct labelling”? To add even more

complexity, what would be the “correct labelling” if we assume that we do not

know precisely where the targets initially are, or if we assume that other targets

may appear later?

This idea of obtaining target identities using a probabilistic approach is known

for some time in the literature, e.g. in Salmond et al. [1997]. More general

approaches, considering arbitrary number of targets and possibility of target

birth and death, have appeared in Garćıa-Fernández and Grajal [2009]; Garćıa-

Fernández et al. [2012]; Ma et al. [2006]; Morelande et al. [2007]; Vo and Vo

[2011], but the problem of labelling in situations such as Fig. 4.1 has not been

considered. Recent works Blom and Bloem [2009, 2011]; Crouse et al. [2011a];

Garćıa-Fernández et al. [2011]; Georgescu et al. [2012] propose quantities associ-

ated with labelling uncertainty that could be used to answer Questions 1 and

2, but the physical interpretation of these quantities is not clear from their math-

ematical description. They also have restrictive assumptions such as considering

the target dynamics as linear-Gaussian, or being defined for only two targets, or

assuming the number of targets to be known and time-invariant.

The difficulty to even properly formulate the questions urges us to look at the

Multi-Target Tracking and Labelling (MTTL) problem from a more fundamen-

tal perspective. We do so by resorting to a rigorous formulation and analysis of

the problem of MTTL in a Bayesian framework. In this chapter, we delve into

Questions 1 and 2 in a more general set-up including target birth and death.

First, we focus on providing the correct questions, i.e. giving a proper mathemat-

ical formulation to Questions 1 and 2, and then we proceed to giving correct

answers to these questions (i.e. presenting practical filtering algorithms for the

MTTL problem).

The contributions of this chapter are:
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1. We provide a mathematical description of the general MTTL problem us-

ing FISST, showing how the labelled multi-target posterior density can be

recursively calculated;

2. We provide a statistical description of the labelling error with clear physical

interpretation, based on the labelled multi-target posterior density: the

labelling probability. This gives a proper formulation for Question 2;

3. We propose four conceptual track extraction schemes for the Bayesian MTTL

problem, which describe how the optimal assignment of labels should be

performed, i.e., we give proper formulations for Question 1;

4. We propose two metrics to evaluate labelling performance for MTTL sys-

tems;

5. We provide methods to calculate the labelling probability for two well-

known MTT algorithms: the MHT and the M-SMC filter, i.e., we give also

answers toQuestions 1 and 2, although we note that these methods suffer

from the degeneracy phenomenon;

6. Last but not least, we present a MTTL algorithm that avoids degeneracy

and is applicable to general multi-target scenarios with time-varying number

of targets, the LUA-PF.

The organization of this chapter is as follows. In Section 4.2, we show how

the labelled multi-target posterior can be recursively calculated in a Bayesian

manner. In Section 4.3, we propose a number of useful statistics for Bayesian la-

belling, including the labelling probability. In Section 4.4, we provide methods to

calculate the labelling probability for the MHT and M-SMC filter algorithms, and

make a comment on the degeneracy phenomenon. In Section 4.5, we introduce

the LUA-PF method for the labelling problem and discuss various practical as-

pects. In Section 4.6, we present simulation results for the LUA-PF applied to the

problem of tracking closely spaced targets. In Section 4.7, we draw conclusions.
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4.2 Bayes formulation of the multi-target track-

ing and labelling (MTTL) problem

In this section, we will show how the labelled multi-target posterior density (the

labelled posterior RFS density when the FISST formulation is used) can be recur-

sively calculated in a Bayesian manner. This posterior density will be necessary

to calculate useful statistics for the Bayesian labelling problem in Section 4.3.

Let us assume that the single-target state vector (composed of entries such

as position, velocity, etc., which we will henceforth refer to simply as location)

assumes values in R
n, and that a label to be assigned to a track may assume

values in a discrete set Π. We then define the labelled multi-target state at time

k as the random finite set

Xk =
{

X
(1)
k , . . . , X

(Tk)
k

}

where X
(i)
k =

[

S
(i)
k , L

(i)
k

]

with S
(i)
k ∈ R

n (corresponding to the the location) and

L
(i)
k ∈ Π (corresponding to the label)1. Since, in order to make labels useful

as target identifiers, no two single-target states can have the same label, a RFS

density function associated with Xk (referred to as a labelled RFS density), must

satisfy

f
({[

s
(1)
k , l

(1)
k

]

, . . . ,
[

s
(tk)
k , l

(tk)
k

]})

= 0,

if ∃i, j ∈ {1, . . . , tk} s.t. i 6= j, l
(i)
k = l

(j)
k . (4.1)

Examples of closed-form RFS densities that satisfy (4.1) are the labelled Pois-

son RFS density and the labelled multi-Bernoulli RFS density described by Vo

and Vo [2011].

Let us denote the corresponding observation as Zk (i.e. also a RFS), and the

sequence of all observations available until and including time k by Zk. Note

that there is no loss of generality on treating observations as finite sets, as an

observation modeled as a vector can also be modeled as a RFS with a single

1In this chapter, for convenience, we will write all vectors as row vectors.
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vector element.

As we have seen in Section 2.3.4, in order to recursively compute the multi-

target posterior RFS density f
(
xk

∣
∣Zk

)
, we need to be able to calculate the prior

f(x0), the likelihood f(zk|xk) and for the state transition density f(xk|xk−1).

Before delving into these densities, we will first take a look at the physical inter-

pretation of the Bayesian labelling problem and delineate its scope. This will be

important to derive formulas that make sense from a physical perspective.

4.2.1 Physical interpretation of the Bayesian labelling prob-

lem

From our discussion in Section 2.3.3, it becomes clear that a label is not a physical

quantity in the traditional sense, as it does not describe any real-world property

of targets. A label is instead an “imaginary stamp” that is a placeholder for the

identity of a target1. This causes labels to have physical interpretation only when

one considers multi-target trajectories, and not the individual multi-target states

at a particular time instant.

As an example, let us suppose that the single-target state X
(i)
k is described

by S
(i)
k ∈ R

2 and L
(i)
k ∈ {A,B}. If one considers solely the realization of the

multi-target labelled state Xk given by

xk = {[4,−2, A], [3, 7, B]}

then the labels A and B do not have any practical meaning. But if one considers

the multi-target trajectory given by (xk,xk+1), where we also have

xk+1 = {[3.4,−2.7, A], [3.4, 6.2, B]}

then labels A and B have clear physical meaning: they establish, for instance, that

location (4,−2) at time k corresponds to the same target as location (3.4,−2.7)

at time k + 1.

1Although there are other less common interpretations of a label, like a sequence of
measurement-to-target associations (e.g. Horridge and Maskell [2009]), if one assumes one-
to-one correspondence between non-clutter measurements and targets.
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We can then define the Bayesian labelling problem by attributing the labels

(i.e. the imaginary stamps) to the locations at time k = 0 (or the desired start of

labelled tracking). If the initial locations are not assumed to be exactly known,

we may instead assign labels to the initial (prior) distributions of the locations.

For the following time steps (k > 0), the Bayesian labelling problem becomes

that of attributing the “imaginary stamps”, in a probabilistic manner, to the

locations. Therefore, if we do not take target births into account, labelling is

essentially a problem of “dot connecting”, i.e. connecting locations at a given

time step (say k) with the initial location distributions at time 0.

Note that if the initial location distributions have large overlap, from the

probabilistic point of view, the targets are already (moving) in close proximity.

Hence we have confusion about the target identities from the very beginning of

the tracks. In the extreme case, if all targets have the same initial distribution,

then naturally all possible labels (dotted connections) will be equivalent, i.e., have

equal probabilities. We call this an ill-posed Bayesian labelling problem, since

one cannot extract any meaningful results as far as the labels are concerned. On

the other hand, if the initial targets are separated (or equivalently, the location

distributions are distinct, having very little overlap), we have a chance to draw

meaningful conclusions and we consider this as a well-posed labelling problem.

For these reasons, the assumption of well-separated initial target distributions is

common in the Bayesian labelling literature (e.g. Blom and Bloem [2011]; Crouse

et al. [2011a]; Garćıa-Fernández et al. [2011, 2012]). Fig. 4.2 illustrates examples

of well-posed and ill-posed Bayesian labelling problems.

When one has no idea at all about the initial target states and the best loca-

tion prior is the uniform distribution over the entire surveillance area, Bayesian

labeling can be more practically applied once the locations of the targets are

precisely identified. A possibility is to have the track initiation performed by a

separate process and to include the tracks in the Bayesian (labelling) recursion

only after having a high probability of existence with relatively small overlap

among the location distributions. A Bayesian MTTL implementation based on

this idea has been recently provided in Garćıa-Fernández et al. [2012].
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Figure 4.2: Well-posed (above) and ill-posed (below) Bayesian labelling problems
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4.2.2 The prior pdf

From our discussion in Section 4.2.1, we can formulate a well-posed Bayesian la-

belling problem when we assume that the targets’ (location) initial distributions

are reasonably distinct. It is also convenient to assume that they are independent,

as it will make easier to write down the multi-target prior as a closed-form ex-

pression. Both the labelled Poisson and multi-Bernoulli RFS densities presented

in Vo and Vo [2011] treat the initial distributions as independent, but only the

multi-Bernoulli RFS allows them to be distinct, being thus an appropriate choice

for the labelled multi-target prior.

With the initial state X0 being a labelled multi-Bernoulli RFS, the initial

targets have distinct labels, contained in a set, say, L0, where each label l ∈ L0

is associated with one target with (location) initial distribution p(l) (·) and with

a probability of existence r(l). The multi-target prior is then given by

f(x0) = f
({[

s
(1)
0 , l

(1)
0

]

, . . . ,
[

s
(t0)
0 , l

(t0)
0

]})

= δt0

(∣
∣
∣

{

l
(1)
0 , . . . , l

(t0)
0

}∣
∣
∣

)

1L0

({

l
(1)
0 , . . . , l

(t0)
0

})

×
∏

l∈L0

(
1− r(l)

)
t0∏

i=1

r

(

l
(i)
0

)

p

(

l
(i)
0

) (

s
(i)
0

)

(

1− r

(

l
(i)
0

)

) (4.2)

where the term δt0

(∣
∣
∣

{

l
(1)
0 , . . . , l

(t0)
0

}∣
∣
∣

)

ensures that f(x0) is nonzero only if the

labels are distinct. A special case of the multi-Bernoulli RFS is when the initial

number of targets is known. In this case, r(l) = 1 for every l ∈ L0, and thus (4.2)

becomes

f(x0) = δL0

({

l
(1)
0 , . . . , l

(t0)
0

}) t0∏

i=1

p

(

l
(i)
0

) (

s
(i)
0

)

(4.3)

where δL0 is a multi-target Dirac delta density (see (2.52)).
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4.2.3 The likelihood function

Let Sk =
{

S
(1)
k , . . . , S

(Tk)
k

}

correspond to the unlabelled multi-target state. We

assume that the observations, conditioned on the rest of the state, are not affected

by labels, i.e.,

f(zk|xk) = f(zk|sk) (4.4)

where formulas for f(zk|sk) can be found in [Mahler, 2007, Chapter 12].

This assumption conforms to the discussion in Section 4.2.1 that labels do not

have any physical meaning when considered at a single time step. If some (par-

tial) information is observable associated with the target identity (non-kinematic

data such as the target’s identification friend-or-foe (IFF) code, which may ap-

pear in messages sent by an aircraft’s transponder), one can simply include such

information in the location Sk, rather than in the label component Lk, in order

to satisfy (4.4). Note that in this case, the labelling problem only becomes easier.

See for example Appendix B.4, that shows how mixed labelling may not appear

at all, if the single-target states contain certain non-kinematic quantities that we

are able to estimate.

4.2.4 The state transition density

We will present formulas for the state transition density f(xk|xk−1) for three

different cases, based on the guidelines in [Mahler, 2007, Chapter 13]. In each

case, we need to ensure that f(xk|xk−1) is a proper labelled RFS density, i.e. that

it fulfills condition (4.1), or in other words, that the density is nonzero only if the

labels of xk are distinct. In practice, we will already have distinct labels in xk−1

(from recursion). Hence it is sufficient to ensure that f(xk|xk−1) is zero when the

labels of xk are not distinct.

4.2.4.1 No target births or deaths

Let p
(

s
(i)
k

∣
∣
∣s

(j)
k−1

)

be the single-target state transition density, i.e. the motion

model that describes the transition from location s
(j)
k−1 to s

(i)
k . Assuming that

single-target dynamics are decoupled, i.e., f(xk|xk−1) can be factorized into
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single-target densities, from [Mahler, 2007, Section 13.2.2], we have

f(xk|xk−1) = f
({

x
(1)
k , . . . , x

(tk)
k

} ∣
∣
∣

{

x
(1)
k−1, . . . , x

(tk−1)
k−1

})

=
∑

θ∈Θtk

tk∏

i=1

p
(

x
(i)
k

∣
∣
∣x

(θ(i))
k−1

)

(4.5)

where Θtk is the set of all permutations on (1, . . . , tk). Note that with no target

births or deaths in the model, tk = tk−1, and

p
(

s
(i)
k , l

(i)
k

∣
∣
∣s

(j)
k−1, l

(j)
k−1

)

= p
(

s
(i)
k

∣
∣
∣s

(j)
k−1

)

δ
l
(i)
k

l
(j)
k−1

(4.6)

since a target cannot change its label. Therefore, from (4.5), we obtain

f(xk|xk−1) =
∑

θ∈Θtk

tk∏

i=1

p
(

s
(i)
k

∣
∣
∣s

(θ(i))
k−1

)

δ
l
(i)
k

l
(θ(i))
k−1

. (4.7)

Observe that since the labels of xk−1 are distinct, f(xk|xk−1) is nonzero only

if the labels of xk are also distinct. Otherwise, if, for example, l
(1)
k = l

(2)
k , then for

every θ, either l
(1)
k 6= l

(θ(1))
k−1 or l

(2)
k 6= l

(θ(2))
k−1 , because the labels l

(i)
k−1 are all distinct.

4.2.4.2 With target deaths, no target births

According to [Mahler, 2007, Section 13.2.2], the general formula for f(xk|xk−1)

in the case when targets may die but no new targets may appear, is given by

f(xk|xk−1) =

tk−1∏

j=1

(

1− PS

(

x
(j)
k−1

)) ∑

θ∈Θtktk−1

tk∏

i=1

PS

(

x
(θ(i))
k−1

)

p
(

x
(i)
k

∣
∣
∣x

(θ(i))
k−1

)

1− PS

(

x
(θ(i))
k−1

) (4.8)

where PS

(

x
(i)
k−1

)

denotes the survival probability, i.e. the probability that a

target survives from time step k − 1 to time k, and Θtktk−1
is the set of all

mappings θ : {1, . . . , tk} → {1, . . . , tk−1}, subject to θ(i) 6= θ(j) for i 6= j.

It is reasonable to assume that, due to the lack of physical interpretation of

labels for a single time step (see Section 4.2.1), the survival probability does not
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depend on the label, i.e. PS

(

x
(i)
k−1

)

= PS

(

s
(i)
k−1

)

. It then follows from (4.6) that

f(xk|xk−1)

=

tk−1∏

j=1

(

1− PS

(

s
(j)
k−1

)) ∑

θ∈Θtktk−1

tk∏

i=1

PS

(

s
(θ(i))
k−1

)

p
(

s
(i)
k

∣
∣
∣s

(θ(i))
k−1

)

δ
l
(i)
k

l
(θ(i))
k−1

1− PS

(

s
(θ(i))
k−1

) . (4.9)

By the same line of argument of Section 4.2.4.1, since the labels of xk−1 are

distinct, (4.9) implies that the labels of xk must also be distinct.

4.2.4.3 With target births and deaths

In order to discuss the case where new targets may appear, let us recall our

discussion in Section 4.2.1. We have described the label as an imaginary stamp

attributed to a particular target initial distribution. Similarly, we can assign

arbitrarily chosen labels to the distributions of the appearing targets, i.e. the

initial distributions of targets that appear after time 0. This can be accomplished

if we assume, similar to what we have done in Section 4.2.2, that the initial

distributions of the appearing targets are also mutually distinct (in order to make

the Bayesian labelling problem well-posed), and for convenience, that they are

also mutually independent and independent from the states of existing targets.

Let again p
(

s
(i)
k

∣
∣
∣s

(j)
k−1

)

denote the single-target state transition density and

PS

(

s
(i)
k−1

)

the survival probability. Let us assume that the targets appearing at

time k have distinct labels, contained in a set Lk, subject to

Lk ∩ (L0 ∪ . . . ∪ Lk−1) = ∅, (4.10)

with each label l ∈ Lk being associated with a new target with (location) initial

distribution p(l) (·) and probability of appearance r(l).

With the aforementioned independence assumptions, f(xk|xk−1) is given by

(see [Mahler, 2007, Appendix G.18])

f(xk|xk−1) =
∑

x∗

k
⊆xk

fnb(x
∗
k|xk−1)f(xk \ x∗

k|∅) (4.11)
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where fnb(x
∗
k|xk−1) is the state transition density f(x∗

k|xk−1) with the additional

assumption of no possibility of target births (with its expression being thus given

by (4.9)) and f(xk \ x∗
k|∅) represents the distribution of the newly appearing

targets at time k. Since the assumptions for the distributions of appearing targets

are the same as the assumptions for the initial distributions at time 0, we can use

an expression analogous to (4.2) for f(xk \ x∗
k|∅), i.e.

f(xk \ x∗
k|∅)

= f
({[

s
(1)
k , l

(1)
k

]

, . . . ,
[

s
(bk)
k , l

(bk)
k

]})

= δbk

(∣
∣
∣

{

l
(1)
k , . . . , l

(bk)
k

}∣
∣
∣

)

1Lk

({

l
(1)
k , . . . , l

(bk)
k

})

×
∏

l∈Lk

(
1− r(l)

)
bk∏

i=1

r

(

l
(i)
k

)

p

(

l
(i)
k

) (

s
(i)
k

)

(

1− r

(

l
(i)
k

)

) (4.12)

where bk = |xk \ x∗
k|. Now, let l∗k be the set of labels of x∗

k, and l
∗

k be the set of

labels of xk \ x∗
k. Substituting (4.12) and (4.9) into (4.11), we obtain

f(xk|xk−1)

=
∑

x∗

k
⊆xk



δ|Φ|
(∣
∣
∣l
∗

k

∣
∣
∣

)

1Lk

(

l
∗

k

) ∏

l∈Lk

(
1− r(l)

) ∏

m∈Φ

r

(

l
(m)
k

)

p

(

l
(m)
k

) (

s
(m)
k

)

(

1− r

(

l
(m)
k

)

)

×
tk−1∏

j=1

(

1− PS

(

s
(j)
k−1

)) ∑

θ∈ΘΦtk−1

∏

n∈Φ

PS

(

s
(θ(n))
k−1

)

p
(

s
(n)
k

∣
∣
∣s

(θ(n))
k−1

)

δ
l
(n)
k

l
(θ(n))
k−1

1− PS

(

s
(θ(n))
k−1

)





(4.13)

where

Φ =
{

i
∣
∣
∣i ∈ {1, . . . , tk}, x(i)

k ∈ x∗
k

}

Φ =
{

i
∣
∣
∣i ∈ {1, . . . , tk}, x(i)

k ∈ xk \ x∗
k

}

,

ΘΦtk−1
= {θ : Φ → {1, . . . , tk−1} |θ(i) 6= θ(j) if i 6= j } .
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Observe that

1. fnb(x
∗
k|xk−1) is nonzero only if l∗k ⊆ L0 ∪ . . . ∪ Lk−1;

2. f(xk \ x∗
k|∅) is nonzero only if l

∗

k ⊆ Lk;

and from assumption (4.10), we conclude that there is only one choice of x∗
k ⊆ xk

that may lead to both fnb(x
∗
k|xk−1) and f(xk \ x∗

k|∅) being nonzero, namely, the

choice where all labels of xk \ x∗
k are contained in Lk and all labels of x∗

k are not.

This implies that f(xk|xk−1) is nonzero only if l∗k ∩ l
∗

k = ∅, and since the labels

of xk−1 are distinct, it also implies that f(xk|xk−1) is nonzero only if all labels of

xk are distinct.

Remark 4.2.1 Our discussion in Section 4.2.1 about “well-posed” and “ill-posed”

Bayesian labelling problems in terms of initial targets (priors) applies to the newly

appearing targets as well. The problem becomes ill-posed unless we assume that

the appearing target distributions are reasonably distinct (either via time or lo-

cation). Even when we assume that at most one target can appear during each

time interval [k − 1, k], the labelling problem may still be ill-posed if appearing

target distributions at consecutive time intervals are similar and there is uncer-

tainty on determining which time interval a target has been born (for instance, in

observations models with the possibility of missed detections).

4.3 Statistics for Bayesian MTTL

To handle the Bayesian MTTL problem, we need more than just calculating the

labelled multi-target posterior density f
(
xk

∣
∣Zk

)
. We need to extract practical

information from this posterior density, that allows us, for instance, to answer

Questions 1 and 2 from our motivational example in Section 4.1. This practical

information, i.e. useful statistics for the MTTL problem, will be described in this

section.

In Bayesian MTTL, extracting practical information from the posterior is

not straightforward due to “mixed labelling”, a situation where there is ambigu-

ity in the assignment of labels to locations. The occurrence of mixed labelling
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Figure 4.3: Particle representation of the multi-target distribution in a situation
where mixed labelling occurs (source: Crouse et al. [2011a]). The squares and
circles mark the possible locations of each target in terms of particles

when targets separate after moving in close proximity to each other has been ob-

served empirically (as e.g. in Boers et al. [2010]) or theoretically by analyzing the

Bayesian recursion (see Appendix B.2). When the multi-target Bayes recursion

is implemented by a particle filter (i.e. the M-SMC filter described in Section

2.3.4), mixed labelling manifests itself by particle clouds corresponding to each

target intersecting each other, as shown in Fig. 4.3.

4.3.1 The labelling probability

We are now ready to propose a mathematical formulation for Question 2 of

Section 4.1, i.e. for the probability of labelling error.

Definition 4.3.1 Consider a RFS X described as in Section 4.2. We define the

labelling probability associated with a realization of X (a finite set of labelled

target states x =
{[

s(1), l(1)
]
, . . . ,

[
s(t), l(t)

]}
) as

pl(x|s) ,
f(x)

f(s)
(4.14)

where s =
{
s(1), . . . , s(t)

}
. Note that, if the denominator is zero, the numerator

will necessarily be zero as well. As a result, since realizations of X can only come
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from the support points of the RFS, then the denominator is always positive.

To put simply, the labelling probability is the ratio between the a “labelled”

multi-target density and its corresponding “unlabelled” multi-target density. In

order to understand what the labelling probability means from a physical point

of view, we use relationships (2.67) and (2.68), which combined and applied to

our problem of interest, lead to

P
(
X(1) ∈ A(1), . . . , X(t) ∈ A(t)

∣
∣T = t

)

=
∑

l(1)∈A
(1)
L

. . .
∑

l(t)∈A
(t)
L

∫

A
(t)
S

×...×A
(1)
S

1

t!P (T = t)
f
({

x(1), . . . , x(t)
})

ds(1) . . . ds(t)

(4.15)

where for i = 1, . . . , t, A(i) = A
(i)
S × A

(i)
L (where A

(i)
S ⊆ R

n and A
(i)
L ⊆ Π). The

derivative of P
(
X(1) ∈ A(1), . . . , X(t) ∈ A(t)

∣
∣T = t

)
w.r.t. the product measure

(ds(1)×µ)×. . .×(ds(t)×µ) (where µ denotes the counting measure) is a conditional

probability density1, given by

p
(
x(1), . . . , x(t)

∣
∣ t
)
=

1

t!P (T = t)
f
({

x(1), . . . , x(t)
})

. (4.16)

Observe now that from (4.14) and (4.16), we get

pl
({

x(1), . . . , x(t)
}∣
∣
{
s(1), . . . , s(t)

})
=

p
(
x(1), . . . , x(t)

∣
∣ t
)

p (s(1), . . . , s(t)| t)

=
p
(
s(1), l(1), . . . , s(t), l(t)

∣
∣ t
)

p (s(1), . . . , s(t)| t)
= p

(
l(1), . . . , l(t)

∣
∣s(1), . . . , s(t), t

)
. (4.17)

At first glance, eq. (4.17) may seem to have an inconsistency, as its left-hand

side involves a set valued variable wherein the order of the elements does not play

any role, whereas the right-hand side involves vector variables wherein the order

of the elements is important. A closer look, however, reveals that in (4.17), if we

1Here we consider probability densities in general sense, when the corresponding probability
function may be differentiable w.r.t. a measure other than the Lebesgue measure.

106



4. THE PROBLEM OF OPTIMAL BAYESIAN TRACK
LABELLING IN MULTI-TARGET TRACKING

write
{
x(1), . . . , x(t)

}
in a different order, say as

{
x(θ(1)), . . . , x(θ(t))

}
(where θ is a

permutation map), then the orders of the
[
l(1), . . . , l(t)

]
and

[
s(1), . . . , s(t)

]
vectors

will also change, but without affecting the association between the indexes of

these two vectors. We can then rewrite (4.17) as

pl
({

x(1), . . . , x(t)
}∣
∣
{
s(1), . . . , s(t)

})

= p
(
l(θ(1)), . . . , l(θ(t))

∣
∣s(θ(1)), . . . , s(θ(t)), t

)
(4.18)

where θ can be any permutation of (1, . . . , t). This leads to a practical interpreta-

tion of the labelling probability: it corresponds to the (conditional) joint proba-

bility mass of the set of labels
{
l(1), . . . , l(t)

}
and the assignment of these labels to

a given set of target locations
{
s(1), . . . , s(t)

}
that results in

{
x(1), . . . , x(t)

}
. The

conditioning on T = t is irrelevant since the given set of locations
{
s(1), . . . , s(t)

}

already determines the cardinality.

For Bayesian labelling purposes, we are interested in the posterior version

of the labelling probability, i.e. considering a time-varying multi-target state

conditioned on all observations up to and including time k, given by

pl
(
xk

∣
∣sk, Z

k
)
=

f
(
xk

∣
∣Zk

)

f (sk |Zk )
(4.19)

which, as a conditional probability mass, has the property

∑

xk∈Πk(sk)

pl
(
xk

∣
∣sk, Z

k
)
= 1 (4.20)

where

Πk

({

s
(1)
k , . . . , s

(tk)
k

})

,

{

xk

∣
∣
∣
∣
∣
xk =

{[

s
(1)
k

l
(1)
k

]

, . . . ,

[

s
(tk)
k

l
(tk)
k

]}

, f(xk|Zk) > 0

}

.

(4.21)

The labelled multi-target posterior f
(
xk

∣
∣Zk

)
can be calculated using the

formulas described in Section 4.2. Formulas to calculate the unlabelled multi-

target posterior f
(
sk
∣
∣Zk

)
can be found in [Mahler, 2007, Chapters 12–14].
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We can readily use (4.19) to mathematically formulate Question 2 of Section

4.1. For a set of labelled tracks x̂k =
{

x̂
(1)
k , . . . , x̂

(t)
k

}

and the corresponding

unlabelled tracks ŝk =
{

ŝ
(1)
k , . . . , ŝ

(t)
k

}

, the probability of labelling error can be

described by 1− pl(x̂k|ŝk). This corresponds to the posterior probability of error

in the assignment of labels to tracks (which also includes errors in the choice of

the set of labels, in case target birth and/or deaths are allowed), given the set of

locations ŝk.

If we need to quantify the “amount of mixed labelling” associated with a set of

locations sk, we may use the Shannon entropy of the labelling probability, given

by

−
∑

xk∈Π(sk)

pl
(
xk

∣
∣sk, Z

k
)
log pl

(
xk

∣
∣sk, Z

k
)

(4.22)

since the Shannon entropy, in Bayesian context, is an uncertainty measure for a

posterior distribution. The situation where all labelling probabilities for a given

sk are equal (and thus entropy is maximized) would correspond to the situation of

“total mixed labelling”, where there is total ambiguity in the assignment of labels

to locations. The situation where one of the labelling probabilities has a value of

one (and thus entropy is minimum and has a value of zero) corresponds to the

situation of “no mixed labelling”, where there is only one reasonable assignment.

4.3.2 Track extraction methods for Bayesian MTTL

We are now ready to propose some conceptual track extraction schemes espe-

cially suited for the Bayesian MTTL problem. These schemes also give a proper

formulation to Question 1 proposed in Section 4.1, i.e. they give a formal inter-

pretation to the notion of “optimal assignment of labels”.

4.3.2.1 The MMOSPA-MLP estimate

Let Sk =
{

S
(1)
k , . . . , S

(tk)
k

}

denote the RFS corresponding to the locations. In

the MMOSPA-MLP scheme, the set of labelled tracks x̂k is the solution of the
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problem given by

ŝk = arg inf
sk

∫
(
ǫ(c)p (sk, sk)

)p
f
(
sk
∣
∣Zk

)
δsk (4.23)

x̂k = argmax
xk

pl
(
xk

∣
∣ŝk, Z

k
)

(4.24)

where ǫ
(c)
p is the OSPA metric given by (2.61) and (2.62). The rationale of the

estimate given by (4.23)–(4.24) is quite simple. In the first step (4.23), that we

call MMOSPA step, we obtain the unlabelled tracks, according to the MMOSPA

estimate given by (2.63). That corresponds, hence, to an optimal choice (in Mean

OSPA sense) of unlabelled tracks.

In the second step (4.24), that we refer as MLP (Maximum Labelling Prob-

ability) step, the labelled tracks are obtained by using the previously obtained

MMOSPA estimate and choosing the assignment of labels that maximizes the

labelling probability according to Definition 4.3.1. The MLP step also gives a

mathematical formulation to Question 1 proposed in Section 4.1; i.e. we treat

the “optimal assignment of labels” as the assignment of labels that gives the

maximum labelling probability.

4.3.2.2 The JoM-MLP estimate

For the purpose of obtaining the unlabelled tracks, an alternative to the MMO-

SPA estimate is the JoM estimate given by (2.59). In this case, the set of unla-

belled tracks is obtained by

ŝk = arg sup
{

s
(1)
k

,...,s
(tk)

k

}

ctk

tk!
f
({

s
(1)
k , . . . , s

(tk)
k

}∣
∣
∣Zk

)

(4.25)

and from ŝk, the set of labelled tracks can be then straightforwardly obtained

using the MLP step (4.24), such that we may refer to the combined estimate as

JoM-MLP estimate.

109



4. THE PROBLEM OF OPTIMAL BAYESIAN TRACK
LABELLING IN MULTI-TARGET TRACKING

4.3.2.3 Pure JoM estimate

Instead of first obtaining the set of unlabelled tracks, and then using the result

to obtain a set of labelled tracks, one may ask: why not simply obtain a set of

labelled tracks in a single step?

This can be accomplished if we apply the JoM estimate directly to f
(
xk

∣
∣Zk

)

instead of f
(
sk
∣
∣Zk

)
. The set of labelled tracks is then obtained by

x̂k = arg sup
{

x
(1)
k

,...,x
(tk)

k

}

ctk

tk!
f
({

x
(1)
k , . . . , x

(tk)
k

}∣
∣
∣Zk

)

. (4.26)

The solution given by (4.26), however, does not precisely give a mathematical

formulation for Question 1 of Section 4.1, since it consists of simultaneously

obtaining the tracks and their labels, rather than assigning labels to tracks. For

the scenario in Fig. 4.1, it gives instead a mathematical formulation to the

question: Where (in the entire surveillance area) is the track with label T1 and

the track with label T2?

4.3.2.4 Pure MMOSPA estimate

Similarly to the “pure JoM” estimate, we can propose a “‘pure MMOSPA” es-

timate, that consists of obtaining a set of labelled tracks in a single step. But

the OSPA metric given by (2.61) and (2.62) cannot be applied to the labelled

multi-target state Xk, only to the unlabelled multi-target state Sk, as it requires

that the single-target states assume values in an Euclidean space. We then re-

quire a modified version of the OSPA metric that can account for labelling errors.

Such metric was presented by Ristic et al. [2011b], with its expression being al-

most identical to (2.61) and (2.62), with only d(c)
(
x(j), x(π(j))

)
being replaced by

d
(c,α)
p′

(
x(j), x(π(j))

)
, where

d
(c,α)
p′

([

s(1)

l(1)

]

,

[

s(2)

l(2)

])

, min
(

‖s(1) − s(2)‖p′p′ + αp′δl(1)
(
l(2)
)
, c
)

(4.27)

where p′ ≥ 1, α ∈ [0, c] and δ denotes the complement of the Kronecker delta,

i.e. δl(1)
(
l(2)
)
= 0 if l(1) = l(2), and δl(1)

(
l(2)
)
= 1 otherwise. The parameter p′
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emphasizes the Euclidean distance between the two objects, whereas α emphasizes

their difference in labelling. Finally, the pure MMOSPA estimate x̂k is obtained

by

x̂k = arg inf
xk

∫ (

ǫ
(c,α)
p,p′ (xk,xk)

)p

f
(
xk

∣
∣Zk

)
δxk (4.28)

where ǫ
(c,α)
p,p′ is the modified OSPA metric.

4.3.2.5 Which track extraction method to use?

Each track extraction method has a distinct emphasis, making it difficult to

declare one as the “best” one. Provided below are some reasonable guidelines:

1. If accurate location/cardinality estimation is far more important than accu-

rate labelling, then it is logical to use the MMOSPA-MLP or the JoM-MLP

as they obviously give priority to optimal location estimation. If they have

similar importance, the pure JoM seems more adequate. If one would like

to fine-tune the relative importance of location estimation and labelling,

this is possible using the pure MMOSPA;

2. If in the single-target tracking case, the MMSE would be a better choice

than the MAP, then it makes sense to use the MMOSPA-MLP or pure

MMOSPA schemes (which in the single-target case, are equivalent to the

MMSE for p = 2). On the other hand, if the MAP would be a better choice

than the MMSE (due to truncation, multi-modality, etc.), the JoM-MLP

or pure JoM make more sense as they are equivalent to the MAP in the

single-target case.

4.3.3 Performance metrics for MTTL

For a given MTTL algorithm (Bayesian or not), if we wish to measure the perfor-

mance of tracking (in the sense of estimating locations) together with labelling,

we may use the modified OSPA metric described in Section 4.3.2.4. Sometimes,

however, we may wish to evaluate the labelling performance of an algorithm

separately from its tracking performance.
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This is certainly possible if the MTTL algorithm obtains the unlabelled tracks

at one step and assigns the labels at another step via some labelling procedure.

For a Bayesian MTTL algorithm, that would be the case if the MMOSPA-MLP

or JoM-MLP track extraction schemes are used (but not the pure JoM or pure

MMOSPA).

Assuming that the ground truth trajectories of targets are known, the first

step is to assign labels to them consistently with the way we assigned labels to

the initial target distributions (see Section 4.2.2) and to the appearing target

distributions (see Section 4.2.4.3). Let sk and xk correspond to the unlabelled

and labelled ground truth multi-target states at time k. We may then, solely

for performance evaluation purposes, apply the evaluated algorithm’s labelling

procedure to the ground truth sk to obtain x̂k, rather than to the set of unlabelled

tracks ŝk. In order to evaluate x̂k, we define the following simple hit-or-miss

metric:

ǫ(x̂k,xk) = ǫ
({[

ŝ
(1)
k , l̂

(1)
k

]

, . . . ,
[

ŝ
(tk)
k , l̂

(tk)
k

]}

,
{[

s
(1)
k , l

(1)
k

]

, . . . ,
[

s
(tk)
k , l

(tk)
k

]})

,







1, ∃i, j s.t. ŝ
(i)
k = s

(j)
k , l̂

(i)
k 6= l

(j)
k

0, otherwise
(4.29)

i.e. the value of the metric is 1 if there is at least one incorrectly assigned label,

and 0 otherwise. Naturally, the metric is only statistically relevant if averaged

over a sufficient number of Monte Carlo runs.

This simple hit-or-miss metric may, however, not be appropriate if there is

mixed labelling involving a large number of targets, such that the chance of all

labels being correctly assigned is very small. For these situations, we propose the

following “per-target” hit-or-miss metric:

ǫ(x̂k,xk) ,
1

tk

∣
∣
∣

{

i ∈ {1, . . . , tk}
∣
∣
∣∃j s.t. ŝ

(i)
k = s

(j)
k , l̂

(i)
k 6= l

(j)
k

}∣
∣
∣ (4.30)

i.e. the value of the metric is equal to the ratio of incorrect label-to-location

assignments.
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4.4 Calculating labelling probabilities for exist-

ing MTT algorithms

In this section we look into the calculation of the labelling probabilities described

in Section 4.3.1 for two existing MTT algorithms: the M-SMC filter described

in Section 2.3.4, and the MHT algorithm (Reid [1979]). This corresponds to

answering Question 2 proposed in Section 4.1, and using the MLP step (4.24)

to perform label assignment, it also corresponds to answering Question 1.

Calculation of the MMOSPA and JoM steps (necessary for the MMOSPA-

MLP and JoM-MLP estimates), and of the “Pure MMOSPA” and the ”Pure

JoM” estimates, is not discussed in this work. They can, in principle, be com-

puted using optimization methods combined with numerical approximation of

the quantities to be maximized/minimized. For the MMOSPA estimate with

assumption of no target births/deaths, some efficient calculation methods have

been presented in Crouse et al. [2011a,b].

4.4.1 Multi-target Sequential Monte Carlo (M-SMC) fil-

ter

By applying the M-SMC filter from Section 2.3.4 to the Bayesian MTTL problem

described in Section 2.3.4, we are, in principle, able to compute the labelling

probability and other statistics described in Section 4.3.

In this algorithm, the multi-target density f
(
xk

∣
∣Zk

)
is represented by a set

of particles {xk(i), wk(i)}NP

i=1, where xk(i) denotes a realization of multi-target

state, wk(i) the particle weight, and NP the number of particles.
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Note that, from Definition 4.3.1 and given assumption (4.4), we have

pl
(
xk

∣
∣sk, Z

k
)
=

f
(
xk

∣
∣Zk

)

f (sk |Zk )

=
f(zk|sk)f

(
xk

∣
∣Zk−1

)

f (zk |Zk−1 ) f (sk |Zk )

=
f
(
xk

∣
∣Zk−1

)

f (sk |Zk−1 )

=

∫
f(xk|xk−1)f

(
xk−1

∣
∣Zk−1

)
δxk−1

f (sk |Zk−1 )
(4.31)

and hence, the labelling probabilities can then be calculated by straightforward

particle approximation of (4.31), i.e.

pl
(
xk

∣
∣sk, Z

k
)
∝

NP∑

j=1

wk−1(j)f(xk|xk−1(j)) (4.32)

where due to (4.20), the proportionality can be turned into an equality by nor-

malization over all xk ∈ Πk(sk).

4.4.2 Multiple Hypothesis Tracking (MHT)

In the MHT algorithm (Reid [1979]), the multi-target density f
(
xk

∣
∣Zk

)
is repre-

sented by a set of hypotheses {hk(i), wk(i)}NH

i=1 where hk(i) denotes a hypothesis

on the multi-target state, wk(i) the hypothesis weight, and NH the number of

hypotheses. According to [Mahler, 2007, Section 10.5], we can model each hy-

pothesis as hk(i) =
{

h
(1)
k (i), . . . , h

(tk(i))
k (i)

}

, where the single-target hypothesis

h
(j)
k (i) is given by a triple:

(

ŝ
(j)
k (i), l

(j)
k (i), P

(j)
k (i)

)

(4.33)

where ŝ
(j)
k (i) and P

(j)
k (i) are respectively hypotheses on the mean and the covari-

ance of the location S
(j)
k , and l

(j)
k (i) is a hypothesis on the corresponding label.

We can use the following procedure to approximate the labelling probabilities

for the MHT. At every time step (starting from k = 0), we produce a number

114



4. THE PROBLEM OF OPTIMAL BAYESIAN TRACK
LABELLING IN MULTI-TARGET TRACKING

of samples, say NP , by sampling from the set of hypotheses {hk(i), wk(i)}NH

i=1. In

other words, for samples m = 1, . . . , NP , we do the following:

1. Choose a hypothesis index im by sampling from the pmf (wk(i))
NH

i=1

2. For j = 1, . . . , tk(im), sample

s
(j)
k (im) ∼ N

(

ŝ
(j)
k (im);P

(j)
k (im)

)

(4.34)

3. Make

xk(m) =
{[

s
(1)
k (im), l

(1)
k (im)

]

, . . . ,
[

s
(tk(im))
k (im), l

(tk(im))
k (im)

]}

(4.35)

As a result of this sampling process, we obtain NP samples of f
(
xk

∣
∣Zk

)
, as if

they were same-weight particles produced by a M-SMC filter that approximates

f
(
xk

∣
∣Zk

)
. Consequently, at the next time step k + 1, we can calculate the

labelling probabilities as in (4.32).

4.4.3 M-SMC filter, MHT and degeneracy

The M-SMC filter is basically a SIR PF applied to the multi-target tracking

problem, and therefore is subject to the degeneracy phenomenon described in

Section 2.1.2.4. The question is whether degeneracy has impact on tracking,

which would be the case if the “indifference condition” (2.13) is not fulfilled.

Using RFS notation, we rewrite (2.13) as

E
[
g(Xk)

∣
∣Zk

]
≈ E

[
g(Xk)

∣
∣x∗

0, . . . ,x
∗
j , Z

k
]

(4.36)

where
(
x∗
0, . . . ,x

∗
j

)
is some hypothesis on the target trajectories until time j, a

time where we expect the information about the trajectories (X0, . . . ,Xj) to have

collapsed into a single particle due to degeneracy.

From our analysis on the persistence of the mixed labelling in Appendix B.3,

we know that if mixed labelling existed at some time j′ < k, it may also be present

in f(xk|Zk), regardless of the observations Zk. However, if we assume labelled

multi-target target trajectories
(
x∗
0, . . . ,x

∗
j

)
, we are also assuming that there is
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no mixed labelling until and including time j. As consequence, if mixed labelling

happened before time j, i.e. if j′ ≤ j, we may have that f(xk|Zk) contains mixed

labelling, but f
(
xk

∣
∣x∗

0, . . . ,x
∗
j , Z

k
)
(the statistic effectively approximated by the

M-SMC filter) does not. In this case, condition (4.36) is likely going to fail.

Note that this situation can happen no matter how far in the past index j

is, meaning that we cannot prevent degeneracy from affecting tracking perfor-

mance by “slowing it down” as described in Section 2.1.2.4. The M-SMC filter

has therefore a tendency of “forgetting” the mixed labelling that exists in the

true posterior density, underestimating the probability of labelling errors. This

situation has been also empirically observed by Boers et al. [2010].

It is easy to see that the MHT algorithm suffers from a similar problem. In

the MHT, each hypothesis on the multi-target state at time k implicitly assumes

hypotheses on the multi-target state at past times 0, . . . , k − 1. Since low prob-

ability hypotheses are periodically pruned, we have a degeneracy phenomenon

similar to the SIR PF degeneracy described in Section 2.1.2.4.

4.4.4 A numerical example

We will show a simple example of the application of the M-SMC filter to the

MTTL problem. We consider the scenario shown in Fig. 4.4, where two targets

start off separately, approach each other (around time step k = 23) and some

time after (around k = 37) separate again.

The location has the form S
(i)
k =

[

P
(i)
x , P

(i)
y , V

(i)
x , V

(i)
y

]

, where x and y denote

the Cartesian coordinates,
(

P
(i)
x , P

(i)
y

)

corresponds to the position (with realiza-

tions denoted by
(

p
(i)
x , p

(i)
y

)

) and
(

V
(i)
x , V

(i)
y

)

corresponds to the velocity (with

realizations denoted by
(

v
(i)
x , v

(i)
y

)

).

The multi-target measurement model f(zk|sk) corresponds to the detection-

type measurement model with no missed detections or false alarms (described in

[Mahler, 2007, Section 12.3.4]). The single-measurement, single-target likelihood

function is given by

p
(

z
(i)
k

∣
∣
∣s

(j)
k

)

= N

(

z
(i)
k ;
[
p(j)x , p(j)y

]
,

[

676 0

0 676

])

. (4.37)
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Figure 4.4: Two-target scenario with mixed labelling

We consider that the number of targets is known by the tracker, i.e. that the

prior is given by (4.3) and the state transition density by (4.7). The single-target

state transition model corresponds to the discretized White Noise acceleration

model described in Bar-Shalom et al. [2001], given by

p
(

x
(i)
k

∣
∣
∣x

(j)
k−1

)

= N










x
(i)
k ;










1 0 T 0

0 1 0 T

0 0 1 0

0 0 0 1










x
(j)
k−1, σ

2










T 3/3 0 T 2/2 0

0 T 3/3 0 T 2/2

T 2/2 0 T 0

0 T 2/2 0 T



















(4.38)

where T = 2 is the interval between observations and σ2 = 676 is the power

spectral density of the process noise. We use NP = 20, 000 particles, initiated

near the true locations of targets; this high number of particles is chosen to

somewhat compensate the degeneracy phenomenon mentioned in Section 4.4.3.

We perform blind importance sampling, i.e. we use the state transition density

f(xk|xk−1) as proposal density for the M-SMC filter.
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We perform track extraction using the MMOSPA-MLP scheme described in

Section 4.3.2.1, with parameter p = 2 (the parameter c is irrelevant since the

number of targets is fixed). The MMOSPA estimate (4.23) is calculated using

a simple “brute force” optimization (i.e. a search over all particles), with the

quantity being minimized approximated by

NP∑

i=1

wk(i)
(
ǫ(c)p (sk(i), sk)

)p

and the labelling probabilities (also used in the MLP step (4.24)) are calculated

using (4.32).

Fig. 4.5(a) shows the MMOSPA-MLP tracks calculated by the filter in a typ-

ical run for scenario, and Fig. 4.5(b) shows the calculated labelling probability

associated with the tracks at each time step. As expected, the labelling proba-

bility decreases as the two targets mutually approach, indicating a partial mixed

labelling situation. However, after the targets come closer together (k = 23), the

behavior of the computed statistic becomes somewhat erratic (Fig. 4.5(b)).

From the theoretical analysis in Appendix B.3, after target separation (k =

37), we expect the labelling probability to become approximately constant. Since

we cannot see this happening in Fig. 4.5(b), the results produced by the M-SMC

filter should be considered questionable. These results suggest that the M-SMC

filter, applied to the MTTL problem, is not only impaired by the degeneracy

phenomenon as seen in Boers et al. [2010], but has poor performance in general

in terms of quantifying the labelling uncertainty. This gives us extra motivation

to look for a novel solution to the MTTL problem.

4.5 A novel solution to the MTTL problem: The

Labelling Uncertainty-Aware Particle Filter

We are now ready to propose a new algorithm for Bayesian MTTL that counters

the degeneracy phenomenon. The algorithm, that we call Labelling Uncertainty-

Aware Particle Filter (LUA-PF), is based on the the RBMPF, conceptually de-

scribed in Section 3.2.3. In Section 4.5.1, we describe the theoretical basis of the
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(a) MMOSPA-MLP estimate calculated using M-SMC filter

0 10 20 30 40 50 60 70
0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

Time steps

(b) Labelling probability calculated using M-SMC filter

Figure 4.5: M-SMC filter labelling results
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algorithm, which is derived in detail in Section 4.5.2, and summarized in Section

4.5.3. In Section 4.5.4, we discuss computational performance aspects.

4.5.1 Theoretical basis

In Section 4.5.2, we have described the RBMPF technique and explained why it

is effective against the SMC degeneracy phenomenon in the context of joint state

and parameter estimation. The same technique can be applied to other problems

where the SIR PF is impaired by degeneracy. The idea is to estimate part of the

state vector (namely, the part that causes the “indifference condition” (2.13) to

be violated) using a non-SMC estimator. More precisely, the non-SMC estimator

is used to calculate the conditional probability distribution of this part of the

state, conditioned on the rest of the state and the available observations.

In Chapter 3, the non-SMC estimator is used for the static components of the

state vector, i.e. parameters. In the MTTL problem, as we have seen in Section

4.4.3, the indifference condition may be violated whenever the posterior density

f
(
xk

∣
∣Zk

)
contains mixed labelling. Hence, an intuitive solution to degeneracy is

to apply the RBMPF to the MTTL problem and have the labels
{

L
(1)
k , . . . , L

(Tk)
k

}

estimated by a non-SMC estimator. This can be accomplished by recalling, from

(4.19), that f
(
xk

∣
∣Zk

)
can be decomposed as

f
(
xk

∣
∣Zk

)
= f

(
sk
∣
∣Zk

)
pl
(
xk

∣
∣sk, Z

k
)
. (4.39)

The RBMPF solution to the MTTL problem, which we name LUA-PF, would

then consist of using a SMC algorithm to approximate f
(
sk
∣
∣Zk

)
(by a set of

particles {sk(i), wk(i)}NP

i=1), and a non-SMC estimator to calculate the labelling

probabilities

pl

({

x
(1)
k , . . . , x

(tk)
k

}∣
∣
∣

{

s
(1)
k , . . . , s

(tk)
k

}

, Zk
)

= pl

({[

s
(1)
k , l

(1)
k

]

, . . . ,
[

s
(tk)
k , l

(tk)
k

]}∣
∣
∣

{

s
(1)
k , . . . , s

(tk)
k

}

, Zk
)

,

which, as explained in Section 4.3.1, correspond to the conditional joint proba-

bility mass of the set of labels
{

l
(1)
k , . . . , l

(tk)
k

}

and the assignment of these labels
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to a given set of target locations
{

s
(1)
k , . . . , s

(tk)
k

}

that results in
{

x
(1)
k , . . . , x

(tk)
k

}

,

given also the available observations Zk. The resulting approximation is then

given by

f(xk|Zk) ≈
NP∑

i=1

wk(i)δsk(i)(sk)pl
(
xk

∣
∣sk, Z

k
)
. (4.40)

Remark 4.5.1 The theoretical justification that we have just presented is valid

in the assumption that the posterior distribution of the locations, i.e. f(sk|Zk)

can be effectively approximated using methods like the M-SMC filter or the MHT.

Naturally, this assumption may not hold; for instance, if the location S
(i)
k contains

parameters, the indifference condition (2.13) will be violated, even without con-

sidering labels. Some adjustments to the algorithm (such as estimating f(sk|Zk)

using also a RBMPF-like algorithm) are needed in these cases.

4.5.2 Derivation of the LUA-PF

From (4.40), the expectation of an arbitrary function g of the labelled multi-target

state Xk, given the available observations, is approximated as

E[g(Xk)
∣
∣Zk ] ≈

NP∑

i=1

wk(i)
∑

xk∈Πk(sk(i))

g(xk)pl
(
xk

∣
∣sk(i), Z

k
)

(4.41)

where Πk is defined by (4.21).

To be able to use approximation (4.41), the LUA-PF must produce, at each

time step k, the following output

{

sk(i), wk(i),
{
pl
(
xk

∣
∣sk(i), Z

k
)}

xk∈Πk(sk(i))

}NP

i=1
(4.42)

and in order to calculate these quantities, we are going to resort to an useful

property of the Bayesian MTTL problem: the “one-sided” decoupling between

tracking and labelling (see Appendix C). This property states that given nonre-

strictive assumptions, tracking (in the sense of estimating locations) does not de-

pend on labelling, although labelling depends on the results of tracking. In other
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words, we can iteratively obtain the set of particles {sk(i), wk(i)}NP

i=1 without any

need to concern ourselves about labelling, which can be done at a complementary

step.

4.5.2.1 Calculation of particle states and weights (tracking step)

From Corollary C.1.5 (Appendix C), we have

f(sk|Zk) =
f(zk|sk)f(sk|Zk−1)

f(zk|Zk−1)
(4.43)

where

f(sk|Zk−1) =

∫

f(sk|sk−1)f(sk−1|Zk−1)δsk−1. (4.44)

This recursion can be implemented using a M-SMC filter or any other multi-

target tracking algorithm that is able to estimate the unlabelled multi-target

posterior distribution (such as the MHT). These algorithms requires us to specify

f(zk|sk), f(s0) and f(sk|sk−1); formulas for these densities for various multi-target

models can be found in [Mahler, 2007, Chapters 12–14].

Note that although the LUA-PF is based on the RBMPF, the algorithm used

to estimate f(sk|Zk) does not need to be a marginal particle filter. The reason

is that due to the “one-sided” decoupling between tracking and labelling, we are

free to use any algorithm capable of estimating f(sk|Zk) for the tracking step.

4.5.2.2 Calculation of particle labelling probabilities (labelling step)

To calculate the labelling probabilities, let us recall (4.31)

pl
(
xk

∣
∣sk, Z

k
)
=

∫
f(xk|xk−1)f

(
xk−1

∣
∣Zk−1

)
δxk−1

f (sk |Zk−1 )

and since the denominator is constant for a given set of locations sk, it does not

need to be explicitly calculated; it may be taken into account by normalizing the

labelling probabilities for the given sk, according to (4.20). We therefore only

need to look at the numerator. Assuming that f
(
xk−1

∣
∣Zk−1

)
is approximated
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by the set of particles

{

sk−1(j), wk−1(j),
{
pl
(
xk−1

∣
∣sk−1(j), Z

k−1
)}

xk−1∈Πk−1(sk−1(j))

}NP

j=1
(4.45)

where Πk(·) is defined by (4.21), and we can apply (4.41) to make the approxi-

mation

∫

f(xk|xk−1)f
(
xk−1

∣
∣Zk−1

)
δxk−1

≈
NP∑

j=1

wk−1(j)
∑

xk−1∈Πk−1(sk−1(j))

f(xk|xk−1)pl
(
xk−1

∣
∣sk−1(j), Z

k−1
)
. (4.46)

where we have presented formulas for the labelled multi-target state transi-

tion density f(xk|xk−1) in Section 4.2.4. Finally, to initialize the recursion for

pl
(
xk

∣
∣sk, Z

k
)
, we have to set

pl(x0|s0) = f(x0)/f(s0).

where formulas for f(x0) are presented in Section 4.2.2.

From (3.46), we need to calculate the labelling probability of the each element

of the set of possible labellings Πk(sk). From (4.21) and (4.46), Πk(sk) may be

approximated as

Πk

({

s
(1)
k , . . . , s

(tk)
k

})

≈
{

xk

∣
∣
∣
∣
∣
xk =

{[

s
(1)
k

l
(1)
k

]

, . . . ,

[

s
(tk)
k

l
(tk)
k

]}

and

∃j,xk−1 ∈ Πk−1(sk−1(j)) s.t. f(xk|xk−1)pl
(
xk−1

∣
∣sk−1(j), Z

k−1
)
> 0

}

. (4.47)

Depending on the number of targets and particles, Πk(sk) may contain la-

bellings with extremely low probability, resulting in waste of computational pro-

cessing. A solution is to replace the condition

f(xk|xk−1)pl
(
xk−1

∣
∣sk−1(j), Z

k−1
)
> 0
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with a stronger condition, for instance, replacing 0 with a probability threshold

τ tk instead. If u denotes the units of measurement of the single-target location

s
(i)
k , τ must have units of measurement u−1. Naturally, the threshold should

be small enough to prevent labelling hypotheses from prematurely disappearing,

which would incur a sort of degeneracy.

4.5.3 LUA-PF algorithm

The algorithm presented below uses the M-SMC filter described in Section 2.3.4

for the tracking step. As we mentioned in Section 4.5.2.1, other Bayesian multi-

target tracking algorithms can be used for this step.

Initialization: For each particle i = 1, . . . , NP

1. Sample s0(i) ∼ f(s0) (refer to [Mahler, 2007, Chapter 14] for formulas for f(s0))

2. Make w0(i) =
1

NP

3. For each x0 ∈ Π0(s0(i)), set pl(x0|s0(i)) = f(x0)/f(s0) (refer to Section 4.2.2 for

formulas for f(x0))

At every time step k:

1. For each particle i = 1, . . . , NP

(a) Sample sk(i) ∼ q(sk|si−1(i), zk), where q(sk|si−1, zk) is a proposal density

(b) Calculate the unnormalized weight according to

wk(i) =
f(zk|sk(i))f(sk(i)|sk−1(i))

q(sk|si−1(i), zk)
(4.48)

(refer to [Mahler, 2007, Chapters 12, 13] for formulas for f(zk|sk) and

f(sk|sk−1))

124



4. THE PROBLEM OF OPTIMAL BAYESIAN TRACK
LABELLING IN MULTI-TARGET TRACKING

(c) Obtain the set Πk(sk(i)) according to

Πk

({

s
(1)
k (i), . . . , s

(tk)
k (i)

})

≈
{

xk

∣
∣
∣
∣
∣
xk =










s
(1)
k (i)

l
(1)
k



 , . . . ,




s
(tk)
k (i)

l
(tk)
k










and ∃j,xk−1 ∈ Πk−1(sk−1(j))

s.t. f(xk|xk−1)pl

(

xk−1

∣
∣
∣sk−1(j), Z

k−1
)

> τ tk(i)

}

. (4.49)

where the parameter τ is discussed in Section 4.5.2.2 (refer to Section 4.2.4

for formulas for f(xk|xk−1))

(d) For each xk ∈ Πk(sk(i)), compute the unnormalized particle labelling prob-

ability according to

pl

(

xk

∣
∣
∣sk(i), Z

k
)

=

NP∑

j=1

wk−1(j)

×
∑

xk−1∈Πk−1(sk−1(j))

f(xk|xk−1)pl

(

xk−1

∣
∣
∣sk−1(j), Z

k−1
)

(4.50)

(e) Normalize the particle labelling probabilities according to

pl

(

xk

∣
∣
∣sk(i), Z

k
)

=
pl
(
xk

∣
∣
sk(i), Z

k
)

∑

x̃k∈Πk(sk(i))
pl (x̃k |sk(i), Zk )

(4.51)

2. Normalize the particle weights according to

wk(i) =
wk(i)

∑NP

j=1wk(j)
(4.52)

3. Perform resampling by sampling NP indexes
(
j̃(i)

)NP

i=1
according to the pmf

(wk(j))
NP

j=1 and afterwards making, for i = 1, . . . , NP

sk(i) := sk

(
j̃(i)

)

pl

(

xk

∣
∣
∣sk(i), Z

k
)

:= pl

(

xk

∣
∣
∣sk

(
j̃(i)

)
, Zk

)

, ∀xk ∈ Πk

(
sk

(
j̃(i)

))

wk(i) :=
1

NP
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4.5.4 Computational aspects

On analyzing the computational complexity of LUA-PF, we focus on the la-

belling step, i.e. computing the particle labelling probabilities pl
(
xk

∣
∣sk(i), Z

k
)
.

For the tracking step, as we mentioned, we can use any Bayesian multi-target

tracking algorithm, and therefore any technique designed to reduce computa-

tional complexity of such algorithms (such as the Independent Partitions and

Coupled Partitions methods proposed by Kreucher et al. [2005], or hypothesis

pruning techniques applicable to the MHT). That does not mean, of course, that

obtaining a good computational performance in Bayesian multi-target tracking

is a simple task, but it is extensively covered in the literature and hence not the

main focus of this work.

If we consider a constant number of targets t, there are t possible labels, and

hence |Πk(sk(i))| can be as high as t!. This means that from (4.50), the worst-

case complexity of calculating a single labelling probability for a single particle

sk(i) is O(NP t!), and to compute all labelling probabilities for all particles, the

worst-case complexity is O(N2
P (t!)

2). Needless to say, this computational cost can

be prohibitive even if we consider a problem of labelling, let us say, seven targets.

If we assume that target births and deaths may occur, Πk(sk) may also grow

with time. The explanation is the following. In our Bayesian formulation of the

MTTL problem in Section 4.2, in order to make the problem well-posed from a

physical perspective, we assume the number of appearing targets at each time

step (and their corresponding labels) to be known. However, we are not required

to assume that the labels of the disappearing targets, neither the number of

disappearing targets, are also known. So, in principle, the algorithm will keep

taking a particular label in consideration until there is very high probability that

it has disappeared. This may never happen due to lack of observability.

For these reasons, the LUA-PF is unsuitable for tracking a large number of

targets, and if we consider the possibility of recurrent target births/deaths, it

is also unsuitable for long time horizons. However, for the problem focused in

this Chapter, illustrated in Fig. 4.1 (i.e. tracking a small group of targets and

individually identifying the targets of the group after separation), the LUA-PF

filter may be a feasible solution. For more complex scenarios, we may resort
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to additional approximations, or to more pragmatic solutions, such as pruning

all but one labelling hypothesis after the user becomes aware of the existence of

mixed labelling (due to receiving some warning message).

The algorithm has also good parallelization properties: steps (4.49)–(4.51) can

be fully parallelized, by making each computation node process a single labelling

hypothesis xk(i). In this way, the computational complexity of each node can be

reduced down to O(NP t!).

4.6 Simulations

4.6.1 Which metric to use?

To decide how to empirically evaluate an arbitrary MTTL algorithm, it is only

natural that we return to the two questions we proposed in Section 4.1, i.e.

that we evaluate how does the algorithm fare on attempting to answer the two

questions.

Question 1 (How does one optimally assign labels to a set of tracks?) may be

evaluated using the hit-or-miss metric that we proposed in Section 4.3.3. We take

the true target locations as the unlabelled tracks, find the optimal assignment of

labels to these tracks (using the MLP step described in Section 4.3.2.1) and see

how often this labelling matches the “true labelling” across a series of Monte

Carlo runs.

The “true labelling” is the assignment of labels to the true locations consis-

tent with the assignment of labels to the initial distributions (in f(x0)) and to

the distributions of appearing targets (in f(xk|xk−1)). If the Bayesian labelling

problem is well-posed (in the sense of the initial/appearing target distributions

being well-separated in either space or time, as described in Section 4.2.1), this

labelling choice should be unique.

The rate of labelling errors for a MTTL algorithm, for a given time k, is then

given by

εtruek = 1− 1

NR

NR∑

i=1

ǫ(x̂k(i),xk) (4.53)
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where ǫ is the hit-or-miss metric given by (4.29), NR is the number of Monte

Carlo runs, xk is the true multi-target state (with the “true labelling”), and x̂k(i)

is the set of tracks computed by the algorithm being tested in the ith-run.

The reader may wonder why do we base performance evaluation on the ground

truth locations, rather than using the MMOSPA or JoM methods (described in

Section 4.3.2) to obtain a set of unlabelled tracks. The reason is that the novel

features of the LUA-PF filter affect only labelling, not tracking (and the choice

of the tracking algorithm is flexible), such that it makes sense to evaluate only

the labelling performance. In case we wanted to jointly evaluate tracking and

labelling, we could use the “labelling-aware” modified OSPA metric presented by

Ristic et al. [2011a].

Question 2 (What is the probability that the assignment of labels is incor-

rect?) may be evaluated by looking at the probability of labelling error calculated

using the MTTL algorithm being tested, given by 1 − pl
(
x̂k

∣
∣sk, Z

k
)
(where sk

denotes the set of true target locations), and comparing it with the actual rate

of labelling errors, given by (4.53). A large difference between these quantities

implies that the given algorithm tends to under- or overestimate its own labelling

errors.

To perform this evaluation, we can compare the rate of labelling errors with

the algorithm-calculated probability of labelling error averaged over a series of

Monte Carlo runs, given by

εcalck = 1− 1

NR

NR∑

i=1

pl
(
x̂k(i)

∣
∣sk, Z

k
)
. (4.54)

We must remind, however, that εcalck does not say anything about the variance

of pl
(
x̂k(i)

∣
∣sk, Z

k
)
across the Monte Carlo runs. This variance is caused both by

the variance of the sequence of observations Zk, and by the Monte Carlo variance

inherent to SMC methods (i.e. the variance due to importance sampling and

resampling, when applicable).

The second type of variance is problematic, as it may indicate that the calcu-

lated pl
(
x̂k(i)

∣
∣sk, Z

k
)
is unreliable. In order to observe the Monte Carlo variance,

we perform a second analysis, this time using a Monte Carlo simulation with a
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fixed sequence of measurements Zk (such that the variance in the results is en-

tirely due to the Monte Carlo variance). In this analysis, we look at the standard

deviation of the calculated probability of labelling error 1 − pl(x̂k|sk) across the
multiple runs, given by

σε
k =

√
√
√
√ 1

NR

NR∑

i=1

(
εcalck − (1− pl (x̂k(i) |sk, Zk ))

)2
. (4.55)

4.6.2 Scenarios

The following scenarios, shown in Fig. 4.6, are analyzed:

1. Two targets approach each other and separate after some time;

2. Two targets approach each other and separate after some time (with swapped

routes);

3. Two targets approach each other (with smaller target separation) and sep-

arate after some time;

4. Two targets approach each other and separate after some time, with one of

the targets appearing some instants before the approximation, and another

target disappearing some instants after the separation.

The multi-target state transition density assumed by the tracker is given by

(4.7) for Scenarios 1–3, and by (4.13) for Scenario 4, with PS

(

s
(j)
k−1

)

constant

and equal to 0.95. We assume that the number of initial targets, as well as

the number of appearing targets at each time k, is known. This implies that

the multi-target prior is given by (4.3), and for Scenario 4, that r(l) = 1 for

l ∈ Lk. The location initial distributions are simply the true target initial states,

with similar considerations for the appearing target. The location vector and the

single-target state transition model are the same as in the numerical example in

Section 4.4.4.

The multi-target measurement model f(zk|sk) corresponds to the detection-

type measurement model (described in [Mahler, 2007, Section 12.3]). Missed

detections and false alarms are only considered in the last scenario (with target
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(d) Scenario 4

Figure 4.6: Multi-target simulation scenarios
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birth and death), with probability of detection 0.95 and uniform clutter density

of 2 · 10−7 per unit of area. The single-measurement, single-target likelihood

function is also the same as in Section 4.4.4.

For all scenarios, we evaluate both the (SIR) M-SMC filter described in Section

2.3.4 and the LUA-PF algorithms. For both the M-SMC filter and the LUA-PF,

we use 2,000 particles for the scenarios 1, 2 and 3, and 4,000 particles for scenario

4. For both filters, we use blind importance sampling, i.e. we use f(xk|xk−1) as

proposal density for the M-SMC filter, and f(sk|sk−1) for the LUA-PF.

The reader may wonder why did we not consider other MTTL algorithms

proposed in the literature, such as the ones in Blom and Bloem [2011]; Crouse

et al. [2011a]. The reason is simply because these algorithms are based on al-

ternate mathematical definitions of “labelling probability” (with unclear physical

interpretation, as we mentioned in Section 4.1) and hence do not fit the analysis

framework described in Section 4.6.1.

4.6.3 Results for Monte Carlo runs with varying sequence

of measurements

The results for the Monte Carlo simulation with Zk being resampled at each run

(as usual), for both the M-SMC filter and LUA-PF, are shown in Figs. 4.7 and

4.8, which show both the rate of labelling errors εtruek and the average calculated

probability of labelling error εcalck . In terms of εtruek , we see that the LUA-PF

provided a lower rate of labelling errors εcalck for all scenarios, i.e. it was clearly

a superior solution w.r.t. answering Question 1. The improvement of using

the LUA-PF was much more significant in Scenarios 1 and 2, where the sepa-

ration between the targets was larger (and hence ambiguity in label-to-location

association was lower).

In terms of εcalck , we can see that, as expected, the M-SMC filter is impaired

by degeneracy; for all scenarios, εcalck is severely underestimated, tending to zero

with time. The LUA-PF, on the other hand, exhibits far more consistency be-

tween actual and calculated errors, clearly avoiding the degeneracy phenomenon

since after target separation as εcalck does not decrease with time. Moreover, εcalck

remains constant with time. This is consistent with the theoretical behavior of
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Figure 4.7: Simulation (varying Zk) results for scenarios 1 and 2
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Figure 4.8: Simulation (varying Zk) results for scenarios 3 and 4
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f(xk|Zk) for this type of scenario, that we have described in Appendix B.3. The

difference between εcalck and εtruek is somewhat higher, however, for Scenarios 1

and 2. This will be further discussed in the next analysis.

As we know, the LUA-PF is computationally more expensive that the M-SMC

filter. If we increase the number of particles of the M-SMC filter such that is has

computational cost comparable to the LUA-PF, then depending on the number

of targets, the M-SMC filter might be able to outperform the LUA-PF in terms of

rate of labelling errors. However, the M-SMC filter would lead to the degeneracy

in the calculation of the probability of labelling error regardless of the number of

particles.

4.6.4 Results for Monte Carlo runs with fixed sequence

of measurements

The results for the Monte Carlo simulation with fixed Zk, for the LUA-PF, are

shown in Fig. 4.9. Only scenarios 1 and 3 are considered in this simulation,

in order to observe the effect of increased target separation on σε
k, the standard

deviation of the calculated probability of labelling error. Since we have seen that

the M-SMC filter is affected by degeneracy (and hence completely incorrect εcalck ),

there is no point on considering it for this analysis.

The variation in εcalck is caused solely by the Monte Carlo variance (as we have

fixed the measurements), and hence, a large σε
k indicates low reliability of the

particle filter algorithm. The results show that σε
k is significant, and even more

significant for scenario 1, with larger target separation. Together with the results

in Figs. 4.7, 4.8, we notice that it is more difficult to accurately calculate the

labelling probabilities for scenarios involving closed spaced targets which never

become very close to each other (in comparison to scenarios where the targets

become almost adjacent).

If a more accurate calculation of the probability of labelling error (i.e. a

more accurate answer to Question 2) is required, we need to reduce the Monte

Carlo variance, for instance by increasing the number of particles, using a better

proposal density, or employing MCMC methods as a replacement or complement

to importance sampling.
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Figure 4.9: Simulation (fixed Zk) results

4.7 Conclusions and recommendations

In this chapter, we presented an in-depth analysis of the Bayesian labelling prob-

lem, focusing on practical aspects, such as how to perform optimal labelling (in

probabilistic sense) and how to characterize the probability of labelling error, cor-

responding respectively to Question 1 and Question 2 that we have proposed

for the motivational scenario described in Section 4.1. A recurring concern of

this work was to define statistics with clear physical interpretation (i.e. that are

meaningful to the user of the system), rather than only abstract mathematical

quantities.

We believe that the contents of this work provide a solid framework for the

development of new multi-target target tracking algorithms with labelling capa-

bility, for better understanding and adapting existing algorithms, and for eval-

uating multi-target tracking and labelling performance. We also remark that

since the statistics proposed in this chapter have clear physical interpretation,

one can obtain analogous versions of them for multi-target statistical represen-

tations other than FISST (such as Janossy densities and families of conventional
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probability densities, as described in Kastella [1997b]), making the contents of

this work highly general.

Moreover, we have used the results of our theoretical analysis to propose a PF-

like algorithm, the LUA-PF, that implements the Bayesian recursion described

in Section 4.2 and avoids the degeneracy phenomenon described in Section 4.4.3.

The experimental results show that the proposed algorithm is indeed far more

suitable to answering the two questions that we proposed in Section 4.1 than the

“plain vanilla” particle filter implementation of the MTTL problem, i.e. the SIR

M-SMC filter.

Some care, however, is necessary when using the proposed algorithm to an-

swer Question 2, as our results indicate that the Monte Carlo variance of the

calculated labelling probabilities may still be significant. If that happens, we

may attempt to use well-established SMC techniques to reduce this variance, or

to increase the number of particles, although the latter may be unfeasible due to

the high computational cost of the algorithm (discussed in Section 4.5.4).

Interesting future works include comparing the track extraction methods de-

scribed in Section 4.3.2 (and possibly propose new methods), studying effective

ways of integrating Bayesian labelling with non-Bayesian labelling (for large scale

scenarios where we cannot formulate a well-posed Bayesian labelling problem, or

where the LUA-PF is computationally unfeasible), and for the LUA-PF, finding

more computationally efficient ways to calculate labelling probabilities, allowing

us to handle more complex scenarios. Naturally, it would also be interesting to

try the proposed algorithm with more complex observation models, such as the

track-before-detect observation model.
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Chapter 5

An analysis of information-driven

sensor management criteria

In sensor management, the usefulness of information theoretic measures seems

to be validated by a large number of empirical studies, but theoretical justifica-

tion presented until so far, both for selection of the measure and for the use of

information-driven sensor management itself, still seems unclear, inconsistent or

debatable.

In this chapter, we argue that information-driven sensor management may

be justified on the basis of uncertainty reduction rather than information gain,

by noting the equivalence between the Kullback-Leibler and the Shannon entropy

sensor management criteria. This is also used to demonstrate that, unlike pre-

vious claims, the asymmetry of the KL divergence is not relevant to the sensor

management problem.

Moreover, we provide a rebuttal to one strong argument for using the Rényi

divergence as a sensor management criterion, namely the “near-universal proxy”

argument. Finally, by using some simple but representative numerical examples,

we analyze the practical effectiveness of the KL and Rényi divergences to problems

where we would like to balance estimation errors in different dimensions.
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5.1 Introduction

As we mentioned in Section 2.4.2.2, information-driven sensor management con-

sists of performing sensor management by attempting to maximize the “informa-

tion content” of the posterior, i.e. its capacity of yielding useful information to

the user. The information content is typically quantified using measures employed

in information theory; for this reason, information-driven sensor management is

also commonly referred as information-theoretic sensor management.

Hintz and McVey [1991] were the first to suggest using information theory in a

problem related to sensor management and state estimation, followed by Manyika

and Durrant-Whyte [1994], who considered expected information gain in sensor

management and data fusion problems. The idea of using the KL divergence for

sensor management appeared in the works of Schmaedeke and Kastella [1994],

Kastella [1997a], and Mahler [1996]. Doucet et al. [2002] provided a particle filter

implementation of sensor management based on the KL divergence, which could

be used for general non-linear systems.

The idea of using the more general Rényi divergence (or α-divergence), instead

of the KL divergence, was introduced by Kreucher et al. [2003a] and demonstrated

for a multi-target tracking problem. In this initial work, the authors did not pro-

vide a particular reason for using the α-divergence instead of the KL divergence,

except that it gives an extra freedom of choosing the parameter α, which could,

in principle, emphasize certain parts of the distribution functions.

Later, Kreucher et al. [2003b] suggest using either α = 0.5 (which corresponds

to the Hellinger affinity) or α = 1 (which corresponds to the KL divergence),

based on Hero et al. [2002], where an empirical study on resolution of clusters

for a georegistration problem was done. The authors also suggest the use of the

value α = 0.5 when the prior and posterior densities are similar. This is based on

an asymptotic analysis, provided in Hero et al. [2001], of the Chernoff exponent,

used in hypothesis testing between two probability densities.

However, Aughenbaugh and La Cour [2008] showed that the supposed superior

discrimination capability of the α-divergence with α = 0.5 does not necessarily

correspond to our intuitive interpretation of information gain. Through analysis

of a few examples, they observed that using α = 0.5 for sensor management, as
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opposed to using the KL divergence, seems to result in actions that emphasize

morphological changes on the distribution (such as rotation, or translation of

modes for multi-modal distributions). Such kind of changes may not necessarily

be desirable from an operational point of view.

Hanselmann et al. [2008] supported the use of the α-divergence instead of

the KL divergence, using the asymmetry of the KL divergence (as opposed to

the symmetry of the α-divergence for α = 0.5) as argument. Hero et al. [2007];

Kreucher et al. [2005] made a strong theoretical argument in favor of information-

driven sensor management, by claiming that the expected value of arbitrary risk

functions is sandwiched between functions of two marginalized Rényi divergences;

this would make a criterion based on the α-divergences a “near-universal” proxy

for task-driven sensor management.

Aughenbaugh and La Cour [2011] also compares information-theoretic mea-

sures for sensor management applied to the problem of tracking a a maneuvering

target observed by multi-static sensors. In this work they state the well-known re-

lationship (Cover and Thomas [1991]; Williams [2007]) between Shannon entropy,

mutual information and expected KL divergence, but the comparison between cri-

teria is done empirically. Finally, Ristic et al. [2011a] describe the implementation

of α-divergences for the Probability Hypothesis Density (PHD) filter, and also

present an empirical comparison between those and other criteria.

In this chapter, we will make a re-evaluation of previous arguments for us-

ing (or not) KL/Rényi divergences as information-theoretic sensor management

criteria. The organization and contributions of this chapter are as follows:

• Section 5.2 reviews the KL Divergence, Shannon entropy, α-divergence and

Rényi entropy criteria;

• Section 5.3 looks at the properties of the Shannon entropy and presents a

theoretical justification of the KL divergence sensor management criterion

based on its relationship with the Shannon entropy;

• Section 5.4 explains the previous “near-universal proxy” argument in favor

of α-divergences, and presents a rebuttal to this argument;

• Section 5.5 provides an empirical analysis of the effectiveness of the KL
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and α-divergence sensor management criteria to the problem of balancing

estimation errors in different dimensions. Although we confirm the result of

Aughenbaugh and La Cour [2008], which suggests that using lower values of

α favors distribution rotations over reduction of uncertainty, this property

does not lead to any practical benefit in our considered problem of balancing

estimation errors;

• Section 5.6 draws conclusions.

5.2 Information-theoretic sensor management

Let us consider again the mathematical formulation of the sensor management

problem provided in Section 2.4.1. As we have seen in Section 2.4.2.2, in the

case of information-driven sensor management, the reward/risk function at time

k has form γ(Zk, Uk), i.e. it is a function of the observation and of the sensing

action, not of the true state. In this section, we we take a closer look at four

information-theoretic sensor management criteria.

5.2.1 Shannon entropy

In this criterion, the risk function is the Shannon entropy (also known simply as

entropy) of the posterior distribution. Entropy is considered to be a measure of

“uncertainty” of a distribution, being given by

H
(
Xk

∣
∣Zk

)
, −

∫

p
(
xk

∣
∣Zk

)
log p

(
xk

∣
∣Zk

)
dxk (5.1)

where without loss of generality, we are assuming that Xk is a continuous random

variable (in this case, the Shannon entropy is also known as differential entropy).

The entropy, as well as other information-driven criteria discussed in this sec-

tion, can be similarly defined for discrete and hybrid continuous-discrete random

variables.
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5.2.2 Kullback-Leibler (KL) divergence

The KL divergence, also known as relative Shannon entropy, is a measure of

difference between two distributions. The KL divergence, as a sensor management

criterion, measures the “information gain” obtained by moving from the prior

p
(
xk

∣
∣Zk−1

)
to the posterior p

(
xk

∣
∣Zk

)
, making it a reward function given by

D
(
p
(
Xk

∣
∣Zk

) ∥
∥p
(
Xk

∣
∣Zk−1

))
,

∫

p
(
xk

∣
∣Zk

)
log

p
(
xk

∣
∣Zk

)

p (xk |Zk−1 )
dxk (5.2)

where we apply the conventions

log
p
(
xk

∣
∣Zk

)

p (xk |Zk−1 )
= 0, for p

(
xk

∣
∣Zk

)
= p

(
xk

∣
∣Zk−1

)
= 0,

p
(
xk

∣
∣Zk

)
/0 = ∞, for p

(
xk

∣
∣Zk

)
> 0.

Since the KL divergence is asymmetric, one can, using analogous conventions,

define the following alternate reward function:

D
(
p
(
Xk

∣
∣Zk−1

) ∥
∥p
(
Xk

∣
∣Zk

))
,

∫

p
(
xk

∣
∣Zk−1

)
log

p
(
xk

∣
∣Zk−1

)

p (xk |Zk )
dxk (5.3)

and in fact, Doucet et al. [2002], suggests, an alternative, using the average of

reward functions (5.2) and (5.3).

5.2.3 Rényi entropy

By taking the same Fadeev’s postulates used to characterize the Shannon entropy,

one can define a generalization of the Shannon entropy (Rényi [1961]), which

corresponds to the Rényi entropies

Hα

(
Xk

∣
∣Zk

)
,

1

1− α
log

∫

p
(
xk

∣
∣Zk

)α
dxk (5.4)

where the parameter α may be used to give more or less emphasis to low proba-

bility regions (“tails”) of the distribution. The Rényi entropy is considered as a
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generalization of the Shannon entropy due to the relationship

lim
α→1

Hα

(
Xk

∣
∣Zk

)
= H

(
Xk

∣
∣Zk

)
(5.5)

i.e. the Shannon entropy corresponds to the Rényi entropy for α → 1.

5.2.4 Rényi divergence

The Rényi divergence or α-divergence is a generalization of the KL divergence,

also in the sense that it satisfies a set of postulates that characterize the KL

divergence. The α-divergence is given by

Dα

(
p
(
Xk

∣
∣Zk

) ∥
∥p
(
Xk

∣
∣Zk−1

))
,

1

α− 1
log

∫

p
(
xk

∣
∣Zk

)α
p
(
xk

∣
∣Zk−1

)1−α
dxk

(5.6)

where we apply the conventions

p
(
xk

∣
∣Zk

)α
p
(
xk

∣
∣Zk−1

)1−α
= 0, for p

(
xk

∣
∣Zk

)
= p

(
xk

∣
∣Zk−1

)
= 0,

p
(
xk

∣
∣Zk

)
/0 = ∞, for p

(
xk

∣
∣Zk

)
> 0

and D0 and D1 are defined using the limits from right and left respectively, which

makes D1 the same as the KL divergence. Similarly to the KL divergence, we

can define the alternate reward function

Dα

(
p
(
Xk

∣
∣Zk−1

) ∥
∥p
(
Xk

∣
∣Zk

))
,

1

α− 1
log

∫

p
(
xk

∣
∣Zk−1

)α
p
(
xk

∣
∣Zk

)1−α
dxk.

(5.7)

A special case of the α-divergence is D0.5, which is a true metric, in the sense

that it obeys the triangle inequality and it is symmetric, i.e.

D0.5

(
p
(
Xk

∣
∣Zk

) ∥
∥p
(
Xk

∣
∣Zk−1

))
= D0.5

(
p
(
Xk

∣
∣Zk−1

) ∥
∥p
(
Xk

∣
∣Zk

))
. (5.8)
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5.3 A look at the Shannon entropy and KL di-

vergence criteria

5.3.1 Entropy as an uncertainty measure

For a sequence of i.i.d. discrete random variables, the Shannon source coding

theorem relates entropy to the minimum necessary number of bits for lossless

data compression of the sequence. In other words, entropy corresponds to a

notion of the amount of “uncertainty” contained in a distribution, since the less

predictable the symbols of the sequence are, the greater the risk is of data loss

by not completely encoding every symbol. Some relatively similar results can be

obtained for continuous random variables (see Cover and Thomas [1991]).

In order to justify the use of entropy as a sensor management criterion, it is de-

sirable to analyze how the “uncertainty” represented by the measure is related to

estimation performance. In the case of a Gaussian posterior distribution, we have

the following well-known relationship between Shannon entropy and covariance

H
(
Xk

∣
∣Zk

)
=

n

2
log 2πe+

1

2
log detPk. (5.9)

where n is the number of dimensions of Xk and Pk is the covariance of Xk given all

available information Zk. Hence, in the Gaussian case, the entropy is monoton-

ically increasing with the covariance determinant. This behavior is appropriate

as the covariance gives us an intuitive notion of uncertainty for Gaussian distri-

butions.

Let us now consider a Gaussian mixture posterior distribution, i.e.

p
(
xk

∣
∣Zk

)
=

NM∑

i=1

w
(i)
k N

(

xk; x̂
(i)
k , P

(i)
k

)

where NM is the number of components of the mixture and w
(i)
k , x̂

(i)
k and P

(i)
k ,

i = 1, . . . , NM denote respectively the weight, mean and covariance of each com-
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ponent. Then the following relationship (see Huber et al. [2008]) holds:

−
NM∑

i=1

w
(i)
k log

(
NM∑

j=1

w
(j)
k N

(

x̂
(i)
k ; x̂

(j)
k , P

(i)
k + P

(j)
k

)
)

≤ H
(
Xk

∣
∣Zk

)
≤

NM∑

i=1

w
(i)
k

(

− logw
(i)
k +

n

2
log 2πe+

1

2
log detP

(i)
k

)

. (5.10)

Now, recall that the covariance of a Gaussian mixture with mean x̂k is given

by

Pk =

NM∑

i=1

w
(i)
k

(

P
(i)
k +

(

x̂
(i)
k − x̂k

)(

x̂
(i)
k − x̂k

)T
)

(5.11)

where x̂k is the mean of the entire mixture (i.e. x̂k =
∑NM

i=1 w
(i)
k x̂

(i)
k ). The con-

sequence is that if we arbitrarily increase the distance between the means of the

components of the mixture, we are able to arbitrarily increase Pk. On the other

hand, by looking at (5.10), we see that the lower bound of H
(
Xk

∣
∣Zk

)
depends

on both means and covariances of individual components of the mixture, but

the upper bound depends only on covariances. So, if we arbitrarily increase the

distance between modes, we can at most make the entropy closer to the upper

bound.

This means that for a Gaussian mixture with sufficiently high separation be-

tween the modes, entropy practically depends only on the the amount of uncer-

tainty around each component, without considering how dispersed these com-

ponents are. This behavior is illustrated in Fig. 5.1 for a scalar (i.e. single-

dimensional Xk) problem. Distribution B has smaller variance, but higher en-

tropy than distribution A.

In this situation, entropy is in some sense a more intuitive measure of uncer-

tainty than variance. This is because by looking at the distribution A, we know

that the state is likely to be very close to point x = −5, and if that is not the case,

to point x = 5. In contrast, by looking at the distribution B we just have a vague

idea of where the real state is! That does not mean, however, that entropy is

always a better sensor management criterion than variance for a scalar problem;
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Figure 5.1: Two Gaussian mixture pdfs, the first with variance 16.25 and entropy
within the interval [1.07,1.23], and the second with variance 7.84 and entropy
within [2.32,2.79]
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for instance, if it is desirable to minimize the squared error w.r.t. to the mean x̂k,

the variance criterion would still, by construction, provide the optimal results.

This is because entropy can only measure the “overall uncertainty” contained in

a distribution, not the errors relative to a particular estimate.

5.3.2 Relationship between the KL divergence and Shan-

non entropy criteria

Let us assume that the system is a POM1DF (hence with the properties described

in Section 2.4.3). Observe that, for this type of system, we have

p
(
xk

∣
∣Zk−1, uk

)

=

∫

. . .

∫

︸ ︷︷ ︸

k

p
(
xk

∣
∣x0, . . . , xk−1, Z

k−1, uk

)
p
(
x0, . . . , xk−1

∣
∣Zk−1, uk

)
dx0 . . . dxk−1

=

∫

. . .

∫

︸ ︷︷ ︸

k

p(xk|xk−1)p(x0, . . . , xk−1

∣
∣Zk−1 )dx0 . . . dxk−1 (5.12)

which does not depend on uk, and hence, a POM1DF has the property

p
(
xk

∣
∣Zk−1, uk

)
= p

(
xk

∣
∣Zk−1

)
. (5.13)

The mutual information between the state Xk and the observation Zk, con-
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ditioned on Zk−1 and on the sensing action uk, is defined as

I
(
Xk;Zk

∣
∣Zk−1, uk

)

,

∫

p
(
xk, zk

∣
∣Zk−1, uk

)
log

p
(
xk, zk

∣
∣Zk−1, uk

)

p (xk |Zk−1, uk ) p (zk |Zk−1, uk )
dxkdzk

=

∫

p
(
zk
∣
∣Zk−1, uk

)
∫

p
(
xk

∣
∣Zk

)
log

p
(
xk

∣
∣Zk

)

p (xk |Zk−1, uk )
dxkdzk

=

∫

p
(
zk
∣
∣Zk−1, uk

)
∫

p
(
xk

∣
∣Zk

)
log

p
(
xk

∣
∣Zk

)

p (xk |Zk−1 )
dxkdzk

=

∫

p
(
zk
∣
∣Zk−1, uk

)
D
(
p
(
Xk

∣
∣Zk

) ∥
∥p
(
Xk

∣
∣Zk−1

))
dzk

= E
[
D
(
p
(
Xk

∣
∣Zk, uk, Z

k−1
) ∥
∥p
(
Xk

∣
∣Zk−1

))∣
∣Zk−1, uk

]
(5.14)

i.e. the mutual information, for a POM1DF system, corresponds to the expected

KL divergence, conditioned on the available information Zk−1 and the sensing

action uk, with the expectation taken over Zk.

Moreover, the mutual information can be rewritten as

I
(
Xk;Zk

∣
∣Zk−1, uk

)

=

∫

p
(
zk
∣
∣Zk−1, uk

)
∫

p
(
xk

∣
∣Zk

)
log p

(
xk

∣
∣Zk

)
dxkdzk

−
∫

p
(
zk
∣
∣Zk−1, uk

)
∫

p
(
xk

∣
∣Zk

)
log p

(
xk

∣
∣Zk−1

)
dxkdzk

= −
∫

p
(
zk
∣
∣Zk−1, uk

)
H
(
Xk

∣
∣Zk

)
dzk

−
∫ ∫

p
(
xk, zk

∣
∣Zk−1, uk

)
log p

(
xk

∣
∣Zk−1

)
dxkdzk

= −
∫

p
(
zk
∣
∣Zk−1, uk

)
H
(
Xk

∣
∣Zk

)
dzk

−
∫

p
(
xk

∣
∣Zk−1

)
log p

(
xk

∣
∣Zk−1

)
dxk

= −E
[
H
(
Xk

∣
∣Zk, uk, Z

k−1
)∣
∣Zk−1, uk

]
+H

(
Xk

∣
∣Zk−1

)
(5.15)

and by noting that the term H
(
Xk

∣
∣Zk−1

)
does not depend on uk, we can see
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that maximizing

E
[
D
(
p
(
Xk

∣
∣Zk, uk, Z

k−1
) ∥
∥p
(
Xk

∣
∣Zk−1

))∣
∣Zk−1, uk

]

over uk is equivalent to maximizing

−E
[
H
(
Xk

∣
∣Zk, uk, Z

k−1
)∣
∣Zk−1, uk

]
. (5.16)

In other words, for short-term sensor management (performed according to

(2.77)) and for POM1DF systems, minimizing the expected entropy and maxi-

mizing the expected KL divergence (with order of arguments as in (5.2)) leads to

exactly the same sensing actions. Therefore, we can say that in this case, the KL

divergence and Shannon entropy criteria are equivalent1.

In contrast, to the best of our knowledge, the KL divergence criterion with

switched order of arguments (i.e. (5.3)), does not have this property of equivalence

with entropy. Therefore, if, following our discussion in Section 5.3.1, we consider

that minimization of entropy is desirable, the asymmetry of the KL divergence

with respect to its arguments is irrelevant because there is a “correct” order of

arguments to be used!

One may naturally ask whether we can obtain a similar relationship for the

α-divergence and the Rényi entropy. Let Hα

(
Xk

∣
∣Zk−1

)
and Hα

(
Xk

∣
∣Zk

)
be

respectively the Rényi entropies of p
(
xk

∣
∣Zk−1

)
and p

(
xk

∣
∣Zk

)
. Let us now define

Iα
(
Xk;Zk

∣
∣Zk−1, uk

)
, Hα

(
Xk

∣
∣Zk−1

)
− E

[
Hα

(
Xk

∣
∣Zk, uk, Z

k−1
)∣
∣Zk−1, uk

]
.

(5.17)

1To the best of our knowledge, this equivalence between both criteria has not been explicitly
stated elsewhere, although relations (5.14) and (5.15) have been known for quite a while, see e.g.
Aughenbaugh and La Cour [2011]; Cover and Thomas [1991]; Williams [2007]. The equivalence
is ignored in some works such as Zhao et al. [2002], where the two criteria are empirically
compared (and even different results are obtained, due to the use of suboptimal heuristics)
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Observe that

Iα
(
Xk;Zk

∣
∣Zk−1, uk

)

= − 1

α− 1
log

(∫

p
(
xk

∣
∣Zk−1

)α
dxk

)

+
1

α− 1

∫

p
(
zk
∣
∣Zk−1, uk

)

× log

(∫

p
(
xk

∣
∣Zk

)α
dxk

)

dzk (5.18)

but the expected value of the α-divergence

D
(
p
(
Xk

∣
∣Zk

) ∥
∥p
(
Xk

∣
∣Zk−1

))

is given by

E
[
D
(
p
(
Xk

∣
∣Zk, uk, Z

k−1
) ∥
∥p
(
Xk

∣
∣Zk−1

))∣
∣Zk−1, uk

]

=
1

α− 1

∫

p
(
zk
∣
∣Zk−1, uk

)
log

(∫

p
(
xk

∣
∣Zk

)α
p
(
xk

∣
∣Zk−1

)1−α
dxk

)

dzk. (5.19)

It is easy to verify empirically that (5.18) and (5.19) generally do not lead

to the same results, except for α → 1 (in which case the Rényi entropy and the

α-divergence become the Shannon entropy and the KL divergence respectively).

Therefore, at least to the best of our knowledge, there is no equivalence between

the maximum α-divergence and minimum Rényi entropy criteria for POM1DF

systems in short-term sensor management. Some empirical results in literature

Hero et al. [2007], however, indicate that both criteria may behave similarly from

a practical point of view.

5.4 On the near-universal proxy argument for

theoretical justification of information-driven

sensor management

One argument in favor of information-driven sensor management is that the Rényi

divergence is a “near-universal” proxy for arbitrary task-driven risk functions, im-

plying that these could be replaced by a Rényi divergence-based criterion, and
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this would likely result in similar performance. It is perhaps the strongest theoret-

ical justification until so far for the use of information-driven sensor management,

as it directly links it to task-driven sensor management. We will present, in this

section, the mathematical formulation of the argument (from Hero et al. [2007];

Kreucher et al. [2005]) and its rebuttal.

5.4.1 The near-universal proxy argument

Let us consider a task-driven sensor management goal γ(Xk, Zk, Uk) (as in Section

2.4.2.1), and consider also the Rényi divergence

Dα , Dα

(
p
(
Xk

∣
∣Zk

) ∥
∥p
(
Xk

∣
∣Zk−1, uk

))
(5.20)

where for a POM1DF process, from (5.13), we have

Dα = Dα

(
p
(
Xk

∣
∣Zk

) ∥
∥p
(
Xk

∣
∣Zk−1

))
. (5.21)

The near-universal proxy argument claims that the expectation of γ taken

over the posterior p
(
xk

∣
∣Zk

)
admits the following “sandwich-inequality”:

γl exp

(

−1− α2

α2

Dα2

)

≤ E
[
γ(Xk, zk, uk)

∣
∣Zk

]
≤ γu exp

(

−1− α1

α1

Dα1

)

(5.22)

where γl and γu are respectively the lower bound and upper bound of γ. There

is a contradiction between Kreucher et al. [2005] and Hero et al. [2007] about the

values of α1 and α2; we show below that Hero et al. [2007] has the correct values:

α1 > 1 and α2 ∈ [0, 1).

According to Hero et al. [2007], this “sandwich-inequality” would imply that

the Rényi divergence is a “near-universal” proxy that performs nearly as well

as task-specific optimal policies for a wide range of tasks. By maximizing an

α-divergence with α < 1, we would automatically minimize a lower bound on the

value of arbitrary error functions. Therefore we could replace possibly complex

and computationally expensive task-driven risk functions by a criterion based on

α-divergences and expect satisfactory performance most of the time.
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5.4.2 Rebuttal of the “near-universal” proxy argument

The “sandwich-inequality” (5.22) was used to justify the use of the Rényi diver-

gence in a series of other works (Chong et al. [2009]; Hero and Kreucher [2007];

Hero et al. [2007]; Kreucher et al. [2007]). Since the “near-universal” proxy argu-

ment seems very strong given the properties of information-driven measures that

we have been able to identify until so far, we will attempt to repeat the same

derivations done in Kreucher et al. [2005] and check the validity of these results.

We start by assuming that the task-driven risk function γ(Xk, Zk, Uk) is non-

negative, with an upper bound γu < ∞ and a lower bound γl > 0. Note that this

assumption can already be quite restrictive; for instance, if p
(
xk

∣
∣Zk

)
is Gaussian

and the risk function is the sum of the square errors with respect to some estimate

(say, the mean), rigorously we do not have γu < ∞ as the support of the Gaussian

distribution is unbounded.

Now, assuming that the system is a POM1DF process (and hence with prop-

erty (5.13)), and by noting that the support of p
(
xk

∣
∣Zk

)
is contained in the

support of p
(
xk

∣
∣Zk−1

)
, we have

E
[
γ(Xk, zk, uk)

∣
∣Zk

]
=

∫

γ(xk, zk, uk)p
(
xk

∣
∣Zk

)
dxk

=

∫

γ(xk, zk, uk)
p
(
xk

∣
∣Zk

)

p (xk |Zk−1 )
p
(
xk

∣
∣Zk−1

)
dxk

= E

[

γ(Xk, zk, uk)
p
(
Xk

∣
∣Zk

)

p (Xk |Zk−1 )

∣
∣
∣
∣
∣
Zk−1

]

. (5.23)

Let us assume that α ∈ [0, 1). For any a > 0, aα is a concave function, and
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by applying Jensen’s inequality to (5.23), we have

E
[
γ(Xk, zk, uk)

∣
∣Zk

]
≥
(

E

[

γ(Xk, zk, uk)
α
p
(
Xk

∣
∣Zk

)α

p (Xk |Zk−1 )α

∣
∣
∣
∣
∣
Zk−1

]) 1
α

=

(∫

γ(xk, zk, uk)
αp
(
xk

∣
∣Zk

)α
p
(
xk

∣
∣Zk−1

)1−α
dxk

) 1
α

≥ γl

(∫

p
(
xk

∣
∣Zk

)α
p
(
xk

∣
∣Zk−1

)1−α
dxk

) 1
α

= γl exp

(
1

α
log

∫

p
(
xk

∣
∣Zk

)α
p
(
xk

∣
∣Zk−1

)1−α
dxk

)

= γl exp

(
α− 1

α
Dα

)

(5.24)

i.e. we have derived the left side of the sandwich inequality (5.22), and hence

the correct values of α in the inequality are the ones presented in Hero et al.

[2007], not in Kreucher et al. [2005]. However, because Dα ≥ 0 (α-divergences

are nonnegative for α > 0) and α−1
α

< 0, we have

γl exp

(
α− 1

α
Dα

)

≤ γl (5.25)

and because of the trivial relation

E
[
γ(Xk, zk, uk)

∣
∣Zk

]
≥ γl (5.26)

we observe that the bound (5.24) has no real significance, since regardless of the

value of the Rényi divergence, it is always more loose than the trivial lower bound

γl. The same holds for α > 1 and the upper bound in (5.22).

Hence, it is evident that the described bounds do not give any performance

guarantees with respect to using α-divergences as replacement for task-driven

sensor management criteria, and thus we cannot consider these bounds as justi-

fication for the near-universal proxy argument.
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5.5 KL and Rényi divergences and “balancing

estimation errors”

In sensor management context, a suggested reason (Aughenbaugh and La Cour

[2008]) for using α-divergences with α < 1 (i.e. to not use the KL divergence)

is the apparent superior capability of these measures, in comparison to the KL

divergence, of discriminating morphological differences between two distributions.

More specifically, differences in aspects other than “overall uncertainty” (i.e. the

Shannon entropy), like rotation around some axis, or relative distance between

the modes of a multi-modal distribution.

As an example, Aughenbaugh and La Cour [2008] have empirically observed

that in sensor management, using lower values of α seems to favor sensing actions

that lead to rotation of the covariance matrix (with the prior p
(
xk

∣
∣Zk−1

)
and

the posterior p
(
xk

∣
∣Zk

)
assumed to be Gaussian), in comparison with actions

that reduce the determinant (which as we have seen in Section (5.9), is propor-

tional to the entropy). This property may be useful in practice. One example is

the problem of tracking a target using bearing-only sensors, or any other sensor

that has dramatically different resolution in different directions. For this type of

problem, we might want to use sensor management not only to reduce average

estimation errors, but also to avoid a large disparity between tracking errors in

different directions, i.e. to “balance” tracking errors.

For this problem, sensor management criteria like minimum entropy or covari-

ance determinant, although useful to reduce estimation errors in general, would

not, in principle, guarantee this balance. As an example, suppose that the prior

is the Gaussian distribution shown in Fig. 5.2(a). Observe that this distribution

has variance in the x-axis much higher than in the y-axis. Now, consider that

the Gaussian distributions shown in Figs. 5.2(b), 5.2(c) are alternative posteriors

resulting from different sensing actions and observations. Both distributions have

the same entropy and covariance determinant, but the one in Fig. 5.2(b) still has

highly unbalanced errors; in fact, the variance in the x-axis is as high as before!

Therefore, for this problem it might be worthwhile considering to use a sensor

management criterion that, whenever sensor management is performed, causes

the posterior to be rotated in relation with the prior, in addition to reducing
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(a) Prior with unbalanced errors (b) Posterior with unbalanced errors

(c) Posterior with balanced errors

Figure 5.2: Some bivariate Gaussian densities

154



5. AN ANALYSIS OF INFORMATION-DRIVEN SENSOR
MANAGEMENT CRITERIA

overall uncertainty. Intuitively, this rotation would cause high errors in the prior,

in some particular direction, to be considerably lower in the posterior, favor-

ing the distribution in Fig. 5.2(c). For this purpose, the suitability of the KL

divergence as a sensor management criterion is indeed questionable, since, as

we mentioned in Section 5.3.2, the KL divergence sensor management criterion,

under some common assumptions, behaves identically to the Shannon entropy

sensor management criterion.

In the remainder of this section, we will conduct two empirical analyses to ver-

ify if α-divergences with α < 1 are indeed useful to “balance” estimation errors.

The first analysis will be an extension of the empirical analysis in Aughenbaugh

and La Cour [2008], in order to obtain more solid conclusions about the ability

of low α Rényi divergences to favor distribution rotations over uncertainty reduc-

tion. The second experiment will be a more practical experiment, where we will

evaluate the performance of the α-divergences in the problem of tracking a target

in two-dimensions using a mobile bearings-only sensor.

5.5.1 Rényi divergences and trade-off between uncertainty

reduction and morphological changes

The empirical analysis in Aughenbaugh and La Cour [2008] was conducted by

taking one Gaussian distribution (representing the prior p
(
xk

∣
∣Zk−1

)
), other five

Gaussian distributions (representing the likelihood p (zk |xk, uk ), each supposed

to result from some sensing action uk), and analyzing the effect of the α parameter

on the expected α-divergence between the prior and the posteriors resulting from

each sensing action. Due to the small number of likelihood functions considered,

this analysis does not allow us to clearly identify the tradeoff between uncertainty

reduction and morphological changes associated with the α-divergences. There-

fore we will perform a complementary test, where we will only consider three

different values of α but a much larger number of likelihood functions. As in

Aughenbaugh and La Cour [2008], our analysis will be based on two-dimensional

states.

Let us assume that the prior has the form p
(
xk

∣
∣Zk−1

)
= N

(
xk; x̂k|k−1, Pk|k−1

)
,

and that the likelihood has the form p (zk |xk, uk ) = N (zk; xk, Rk). We consider
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the likelihood to be a “scaled down” version of the prior when

Rk = cPk|k−1 (5.27)

where c ∈ (0, 1). In this case, from the Kalman filter formula, the covariance of

the posterior will be given by

Pk = Pk|k−1 − Pk|k−1

(
Pk|k−1 + cPk|k−1

)−1
Pk|k−1

= Pk|k−1 −
1

1 + c
Pk|k−1

=
c

1 + c
Pk|k−1 (5.28)

i.e. such likelihood function will result in the posterior covariance having a smaller

determinant than the prior (since c
1+c

< 1). However, the balance of errors in

different dimensions will be the same. For instance, if Pk|k−1 and Pk are given by

Pk|k−1 =

[

σ2
x 0

0 σ2
y

]

, Pk =

[

σ′2
x σ′

xy

σ′
xy σ′2

y

]

(5.29)

then for a scaled down likelihood, we will have
σ′2
y

σ′2
x
=

σ2
y

σ2
x
, and σ′

xy = 0.

We consider the likelihood to be a “rotated” version of the prior when

Rk = MPk|k−1M
T (5.30)

where M is an orthogonal matrix with detM = +1. For the case of two-

dimensional states, M has the form

M =

[

cos(θ) − sin(θ)

sin(θ) cos(θ)

]

(5.31)

where θ is the rotation angle. The covariance of the posterior will then be given

by

Pk = Pk|k−1 − Pk|k−1

(
Pk|k−1 +MPk|k−1M

T
)−1

Pk|k−1 (5.32)
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Figure 5.3: Variance ratio
σ′2
y

σ′2
x
according to the rotation angle θ

and for Pk|k−1 and Pk given by (5.29), we have

σ′2
y

σ′2
x

=
2
σ2
y

σ2
x
− σ2

y

σ2
x
sin(θ)2 + sin(θ)2

σ2
y

σ2
x
sin(θ)2 − sin(θ)2 + 2

. (5.33)

Fig. 5.3 shows
σ′2
y

σ′2
x

for
σ2
y

σ2
x
= 10 and varying values of the rotation angle θ.

As we can clearly see, rotating the likelihood covariances leads to an increasingly

high balance of errors in different dimensions. Hence, in principle, choosing sens-

ing actions that favor rotated likelihoods over scaled down likelihoods would be

beneficial in terms of balancing estimation errors.

We conduct two experiments, where in each experiment we compute the ex-

pected α-divergences (of the form E
[
Hα

(
Xk

∣
∣Zk

)∣
∣Zk−1, uk

]
) for two hypothet-

ical sensing actions uk(1) and uk(2). We consider only the first form of the α-

divergence (given by (5.6)), since given the discussion in Section 5.3.2, we would

like to have equivalence of the KL divergence (α → 1) sensor management crite-

rion with the Shannon entropy. Observe that assuming a POM1DF system, the
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expression of the α-divergence (5.6) can be rewritten as

Hα

(
Xk

∣
∣Zk

)
=

1

α− 1
log

∫

p
(
xk

∣
∣Zk

)α
p
(
xk

∣
∣Zk−1

)1−α
dxk

=
1

α− 1
log

∫
p (zk |xk, uk )

α

p (zk |Zk−1, uk )
αp
(
xk

∣
∣Zk−1

)
dxk

=
1

α− 1
log

∫
p (zk |xk, uk )

α p
(
xk

∣
∣Zk−1

)
dxk

(∫
p (zk |xk, uk ) p (xk |Zk−1 ) dxk

)α . (5.34)

which is a convenient expression as it does not require explicit calculation of

the posterior density. The expected α-divergence may be then be easily approxi-

mated using Monte Carlo sampling. For each sensing action, we first generate NS

samples xk(i), i = 1, . . . , NS of the state Xk according to p
(
xk

∣
∣Zk−1

)
. For each

i = 1, . . . , NS, we then generate a sample zk(i) of Zk according to p (zk |xk(i), uk ).

Observe that this procedure corresponds to using sequential sampling to generate

NS samples of Zk according to p
(
zk
∣
∣Zk−1, uk

)
, since

p
(
zk
∣
∣Zk−1, uk

)
=

∫

p (zk |xk, uk ) p
(
xk

∣
∣Zk−1

)
dxk (5.35)

and the expected α-divergence can then be evaluated using

E
[
Hα

(
Xk

∣
∣Zk

)∣
∣Zk−1, uk

]

=

∫
1

α− 1
log

∫
p (zk |xk, uk )

α p
(
xk

∣
∣Zk−1

)
dxk

(∫
p (zk |xk, uk ) p (xk |Zk−1 ) dxk

)αp
(
zk
∣
∣Zk−1, uk

)
dzk

≈ 1

NS

NS∑

i=1

1

α− 1
log

∑NS

j=1 p (zk(i) |xk(j), uk )
α

(
∑NS

j=1 p (zk(i) |xk(j), uk )
)α . (5.36)

In the first experiment, we assume that sensing action uk(1) results in a rotated

likelihood with θ = 90◦, and that uk(2) results in a scaled likelihood where we

vary the scaling factor c between 0.3 and 0.8. We then verify, for the values of α of

0.1, 0.5, 0.999 (where for the last value, the α-divergence corresponds practically

to the KL divergence), which sensing action is preferred, i.e. leads to the largest

value of the expected α-divergence. We use NS = 5, 000 samples to approximate

the expected α-divergences, and the results, in terms of whether decision 1 or 2
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is taken, are shown in Fig. 5.4(a). We can see, as intuitive, that for very low

c all α-divergence criteria favor decision 2 (corresponding to scaling down the

covariance), and for c close to 1 all criteria favor decision 1 (corresponding to the

rotation). However, it is also clear that lower values of α lead to the rotation

having a higher preference, as they require lower values of c in order to favor the

scaling.

The second experiment is basically the opposite: uk(1) results in a scaled

down likelihood with c = 0.75, and uk(2) results in a rotated likelihood where

we vary the rotation angle θ between θ = 0 and θ = 90◦. The results are shown

in Fig. 5.4(b). The behavior of the α-divergences is quite similar to the one

verified in the first experiment: for θ close to zero, all criteria favor the scaling,

whereas for θ close to 90◦, all criteria favor the rotation, with lower values of α

giving preference to the rotation. There are, however, some discontinuities in the

decision curve, which indicates that the sensitivity of the expected α-divergence to

θ is not particularly strong (recalling that the expected α-divergence is calculated

using a numerical approximation).

Regardless, the results of both experiments seem to confirm the suggestion in

Aughenbaugh and La Cour [2008] that using lower values of α gives preference to

sensing actions that lead to morphological changes in the posterior, over sensing

actions that lead solely to reduction of overall uncertainty. Therefore, in theory,

using a α-divergence with α < 1 instead of the KL divergence might be advanta-

geous for the aforementioned problem of balancing estimation errors in different

dimensions. This is what we will try to verify in the next section.

5.5.2 A practical example: bearings-only tracking

We now consider the problem of tracking using bearings-only sensors, where we

will check whether the choice of the α parameter in the α-divergence has effect on

sensor management, regarding the balancing of the estimation errors in different

dimensions.

We consider a scenario where a moving target is observed by a Unmanned

Aerial Vehicle (UAV) which attempts to maintain a fixed distance d = 1000

from the target. More precisely, it does so by maintaining a fixed distance to
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Figure 5.4: α-divergence trade-off test results
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the MMSE estimate of the target position calculated using the predictive density

p
(
xk

∣
∣Zk−1

)
. We assume that, at each time step k, there are three sensing actions

available:

1. To move the UAV such that its relative angle (to the MMSE estimate) is

the same of the previous step k − 1;

2. To move the UAV such that its relative angle moves 5◦ clockwise from k−1;

3. To move the UAV such that its relative angle moves 5◦ counterclockwise

from k − 1.

The target motion model is the simple discretized white noise acceleration

model described in Bar-Shalom et al. [2001], with the state vector given by

Xk = [P x
k , P

y
k , V

x
k , V

y
k ]

T , where x and y denote the Cartesian coordinates, (Px, Py)

corresponds to the position (with realizations denoted by (px, py)) and (Vx, Vy)

corresponds to the velocity (with realizations denoted by (vx, vy)). The state

transition density is given by (4.38), where we consider T = 1 as the interval be-

tween two observations and σ2 = 4900 as the power spectral density of the process

noise. The observations are the observed relative angles of the UAV w.r.t. to the

targets, and they are modeled as

p (zk |xk, uk ) = N

(

zk; arctan
p̃xk − pxk
pyk − p̃yk

, σ2
b

)

(5.37)

where (p̃xk, p̃
y
k) is the true position of the sensor in Cartesian coordinates and

σ2
b = (1◦)2 is the variance of the measurement noise.

The target is tracked using a SIR PF with NP = 1, 000 particles, with the ini-

tial state of the target assumed to be known by the tracker. The target trajectory

is a simple straight line, constant velocity trajectory with x0 = [0, 5000, 250, 0]T

and the sensor initial position is (p̃xk, p̃
y
k) = (0, 4000). The expected sensor man-

agement reward, i.e. the expected α-divergence is calculated using sequential

sampling based on the particles produced at the previous time step k − 1, as

described in Section 2.4.4.

By using the α-divergence with α = 0.999 as sensor management criterion,

we obtain the results as given in Fig. 5.5. Fig. 5.5(a) shows both the trajectory
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estimated by the tracker (using the MMSE) and the trajectory of the UAV de-

termined on basis of sensor management. Fig. 5.5(b) shows the absolute position

errors in the two dimensions. There is a noticeable unbalance of errors in the two

dimensions, especially during the initial time steps. This is caused by the relative

position of the bearings-only sensor to the target in those time steps.

What we would like to know is whether using lower values of α would give

us a better balance of these errors, as implied by our analysis in Section 5.5.1.

Unfortunately, for this experiment, the answer is no. Using α = 0.1 or α = 0.5

results in exactly the same sensing actions being chosen at all time steps as

α = 0.999. Hence, obviously, tuning the α parameter does not produce better

results in terms of balancing estimation errors.

Therefore, although the results in Section 5.5.1 shows that using a lower value

of α leads to a somewhat higher preference to distribution rotations, the sensitiv-

ity of the decision curve to the α parameter may not be strong enough to result

in different performance on balancing estimation errors for practical applications

(as also suggested by Fig. 5.4(b)).

5.6 Conclusions and recommendations

In this chapter, we examined several arguments for the theoretical justification of

information-driven sensor management criteria. We have rebutted the strongest

argument in favor of information-driven sensor management, namely, the “near-

universal proxy” argument, meaning that the relationship between information-

driven sensor management and task-driven performance is not simple as pre-

viously thought. However, we verified that the KL divergence and the Shannon

entropy criteria are mutually linked, with the latter being an intuitive representa-

tion of the “overall uncertainty” contained in a distribution, at least for Gaussian

and Gaussian mixture probability densities.

Possibly the main conclusion of our work is that the benefits of using the

general Rényi divergences instead of the KL divergence for sensor management

are not entirely clear. From empirical analyses, it seems that α-divergences with

different values of α could be useful for problems where a better balance of es-

timation errors in multiple dimensions is desirable, but in practice, we were not
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Figure 5.5: Results for bearings-only tracking and sensor management experiment
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able to verify any difference in performance in a practical setting.

A possible subject of future work would be to analyze the properties of the KL

divergence criterion for long-term sensor management (OL, OLF or CL), where

the criterion is not, to the best of our knowledge, equivalent to the Shannon

entropy criterion, as well as to analyze possible advantages of using general α-

divergences instead of the KL divergence for such kind of problem.
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Chapter 6

Conclusions and
recommendations

In this thesis, we have studied two classes of estimation problems where char-

acterization of uncertainty, using Sequential Monte Carlo (SMC) methods, is a

difficult problem: joint state and parameter estimation, and Multi-Target Track-

ing and Labelling (MTTL). In addition, we have studied the problem of reducing

estimation uncertainty through the use of information-driven sensor management.

For the joint state and parameter estimation problem, we have proposed two

novel algorithms, more specifically, two new versions of the Rao-Blackwellized

Marginal Particle Filter (RBMPF). The two proposed methods, the Discrete

RBMPF (D-RBMPF) and the Monte Carlo RBMPF (MC-RBMPF) are appli-

cable to general models and are designed to mitigate the bias caused by the

introduction of artificial dynamics, typical of online Bayesian PF-based parame-

ter estimation methods. The proposed algorithms have also nice parallelization

properties. By examining their performance in two practical problems, we have

seen that they can be an effective solution to online joint state and parameter

estimation, in particular when good characterization of uncertainty is needed.

In comparison with state-of-the-art techniques, however, these algorithms have

higher computational cost. It is therefore highly desirable to find a RBMPF im-

plementation with lower computational cost but still applicable to highly general

models. One idea is to combine a SMC filter with a bank of parallel determin-

istic estimators (for instance, Extended or Unscented Kalman Filters). Other

interesting topics of future research include the adaption of the proposed joint
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state and parameter estimation algorithms for off-line processing, and studying

the possibility of replacing the MPF needed by these algorithms by a regular SIR

PF.

For the MTTL problem, we have theoretically shown how to perform opti-

mal labelling and how to characterize the uncertainty associated with labelling

in Bayesian context. These are particularly useful for the situation targets move

in close proximity for a while, and afterwards separate. A recurring concern of

this work was to define statistics with clear physical interpretation (i.e. that are

meaningful to the user of the system), rather than only abstract mathematical

quantities. Moreover, we have used the results of our theoretical analysis to pro-

pose a PF-like algorithm, the Labelling Uncertainty Aware PF (LUA-PF), that

avoids the particle filter degeneracy phenomenon. The experimental results show

that the proposed algorithm has superior labelling performance and is indeed

far more suitable for characterizing labelling uncertainty than the “plain vanilla”

particle filter implementation of the MTTL problem, i.e. the SIR M-SMC fil-

ter. Interesting future works include a more in-depth analysis of track extraction

methods, integrating Bayesian labelling with non-Bayesian labelling (for large

scale scenarios where we cannot formulate a well-posed Bayesian labelling prob-

lem, or where the LUA-PF is computationally unfeasible), and for the LUA-PF,

finding more computationally efficient ways to calculate labelling probabilities,

as well as test the algorithm with more complex observation models.

Finally, in the topic of sensor management, we have examined several argu-

ments for the theoretical justification of information-driven sensor management

criteria. We have rebutted the strongest argument in favor of information-driven

sensor management, namely, the “near-universal proxy” argument, meaning that

the relationship between information-driven sensor management and task-driven

performance is not simple as previously thought. However, we verified that the

KL divergence and the Shannon entropy criteria are mutually linked, with the

latter being an intuitive representation of the “overall uncertainty” contained in

a distribution. Possibly the main conclusion of our work is that the benefits

of using the general Rényi divergences instead of the KL divergence for sensor

management are not entirely clear. From empirical analyses, it seems that α-

divergences with different values of α could be useful for problems where a better
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balance of estimation errors in multiple dimensions is desirable, but in practice,

we were not able to verify any difference in performance in a practical setting.

A possible subject of future work would be to analyze the properties of the KL

divergence criterion for long-term sensor management, where the criterion is not,

to the best of our knowledge, equivalent to the Shannon entropy criterion, as well

as to analyze possible advantages of using general α-divergences instead of the

KL divergence for such kind of problem.
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Appendix A

The optimal proposal density of

the MPF

In Section 2.1.5 we have presented the Marginal Particle Filter (MPF) algorithm

and explained, in the context of the algorithm, how to sample from the blind

proposal density, which disregards the last observation. In this appendix, we will

derive the optimal proposal density for the MPF, i.e. the proposal density that

minimizes the variance of the weights, for a POM1 process.

From (2.31), the minimum variance of the weights (more precisely zero) would

be achieved if we could sample directly from p
(
xk

∣
∣Zk

)
. While this cannot be
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accomplished for obvious reasons, we can approximate p
(
xk

∣
∣Zk

)
as

p
(
xk

∣
∣Zk

)
≈

p (zk |xk )
∑NP

j=1wk−1(j)p (xk |xk−1(j))

p (zk |Zk−1 )

=

NP∑

j=1

wk−1(j)p (zk |xk, xk−1(j)) p (xk |xk−1(j))

p (zk |Zk−1 )

=

NP∑

j=1

wk−1(j)p (zk |xk−1(j)) p (xk |xk−1(j), zk )

p (zk |Zk−1 )

=

NP∑

j=1

λk(j)p (xk |xk−1(j), zk ) (A.1)

where

λk(j) =
wk−1(j)p (zk |xk−1(j))

p (zk |Zk−1 )
. (A.2)

Now, observe that

p (zk |xk−1(j)) =

∫

p (zk |xk, xk−1(j)) p (xk |xk−1(j)) dxk

=

∫

p (zk |xk ) p (xk |xk−1(j)) dxk (A.3)

such that we can compute p (zk |xk−1(j)) by generating some number (say NS)

of samples xk(j
′), j′ = 1, . . . , NS according to p (xk |xk−1(j)), and performing the

approximation

p (zk |xk−1(j)) ≈
1

NS

NS∑

j′=1

p (zk |xk(j
′)) . (A.4)

Therefore, the most significant challenge of performing optimal importance

sampling in a MPF is to sample from p (xk |xk−1, zk ), which as we have seen in

Section 2.1.3, is also the optimal proposal density of the SIR PF.
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Appendix B

An in-depth analysis of the

mixed labelling phenomenon in

two-target tracking

In this appendix, we will use the formulas and statistics for the Bayesian Multi-

Target Tracking and Labelling (MTTL) problem (described in Sections 4.2 and

4.3) to analyze the mixed labelling phenomenon in a simple scenario, namely the

case where there are two targets, with no possibility of targets births or deaths. In

particular, we will show, for this scenario, how the mixed labelling phenomenon

arises in the situation of closely spaced targets, and how (and when) it persists

after target separation.

B.1 The MTTL Bayesian recursion in the two-

target case

We will first derive some useful formulas to describe the MTTL Bayesian re-

cursion in the two-target scenario. Consider the mathematical formulation of
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the Bayesian MTTL problem in Section 4.2. Assuming that there are two tar-

gets, that the number of targets is known, and that there are no target births

or deaths, then Xk =
{

X
(1)
k , X

(2)
k

}

is the RFS describing the labelled states,

Sk =
{

S
(1)
k , S

(2)
k

}

is the RFS describing the unlabelled states (locations), and

Lk =
{

L
(1)
k , L

(2)
k

}

is the RFS describing the labels. Without loss of generality,

we also assume that a target’s label is either A or B.

First, let us define

pAB

(

s
(1)
k , s

(2)
k

)

, pl

({[

s
(1)
k

A

]

,

[

s
(2)
k

B

]}∣
∣
∣
∣
∣

{

s
(1)
k , s

(2)
k

}

, Zk

)

, (B.1)

pBA

(

s
(1)
k , s

(2)
k

)

, pl

({[

s
(1)
k

B

]

,

[

s
(2)
k

A

]}∣
∣
∣
∣
∣

{

s
(1)
k , s

(2)
k

}

, Zk

)

, (B.2)

pAB

(

s
(1)
k−1, s

(2)
k−1

)

, pl

({[

s
(1)
k−1

A

]

,

[

s
(2)
k−1

B

]}∣
∣
∣
∣
∣

{

s
(1)
k−1, s

(2)
k−1

}

, Zk

)

, (B.3)

pBA

(

s
(1)
k−1, s

(2)
k−1

)

, pl

({[

s
(1)
k−1

B

]

,

[

s
(2)
k−1

A

]}∣
∣
∣
∣
∣

{

s
(1)
k−1, s

(2)
k−1

}

, Zk

)

(B.4)

where pl denotes the labelling probability (as defined in Definition 4.3.1). Using

(4.31), we have

pAB

(

s
(1)
k , s

(2)
k

)

=
1

f
({

s
(1)
k , s

(2)
k

}∣
∣
∣Zk−1

)

∫

f

({[

s
(1)
k

A

]

,

[

s
(2)
k

B

]}∣
∣
∣
∣
∣
xk−1

)

f
(
xk−1|Zk−1

)
δxk−1

=
1

f
({

s
(1)
k , s

(2)
k

}∣
∣
∣Zk−1

)

(

pAB
AB

(

s
(1)
k , s

(2)
k

)

+ pBA
AB

(

s
(1)
k , s

(2)
k

))

(B.5)

where, assuming without loss of generality that location S
(i)
k assumes values in
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an Euclidean space R
n, we have

pAB
AB

(

s
(1)
k , s

(2)
k

)

=

∫ ∫

f

({[

s
(1)
k

A

]

,

[

s
(2)
k

B

]}∣
∣
∣
∣
∣

{[

s
(1)
k−1

A

]

,

[

s
(2)
k−1

B

]})

× f

({[

s
(1)
k−1

A

]

,

[

s
(2)
k−1

B

]}∣
∣
∣
∣
∣
Zk−1

)

ds
(1)
k−1ds

(2)
k−1, (B.6)

pBA
AB

(

s
(1)
k , s

(2)
k

)

=

∫ ∫

f

({[

s
(1)
k

A

]

,

[

s
(2)
k

B

]}∣
∣
∣
∣
∣

{[

s
(1)
k−1

B

]

,

[

s
(2)
k−1

A

]})

× f

({[

s
(1)
k−1

B

]

,

[

s
(2)
k−1

A

]}∣
∣
∣
∣
∣
Zk−1

)

ds
(1)
k−1ds

(2)
k−1. (B.7)

From Definition 4.3.1, we have

f

({[

s
(1)
k−1

A

]

,

[

s
(2)
k−1

B

]}∣
∣
∣
∣
∣
Zk−1

)

= pAB

(

s
(1)
k−1, s

(2)
k−1

)

f
({

s
(1)
k−1, s

(2)
k−1

}∣
∣
∣Zk−1

)

,

(B.8)

f

({[

s
(1)
k−1

B

]

,

[

s
(2)
k−1

A

]}∣
∣
∣
∣
∣
Zk−1

)

= pBA

(

s
(1)
k−1, s

(2)
k−1

)

f
({

s
(1)
k−1, s

(2)
k−1

}∣
∣
∣Zk−1

)

(B.9)

and substituting (4.7), (B.8), (B.9) into (B.6), (B.7), we obtain

pAB
AB

(

s
(1)
k , s

(2)
k

)

=

∫ ∫

p
(

s
(1)
k

∣
∣
∣s

(1)
k−1

)

p
(

s
(2)
k

∣
∣
∣s

(2)
k−1

)

pAB

(

s
(1)
k−1, s

(2)
k−1

)

× f
({

s
(1)
k−1, s

(2)
k−1

}∣
∣
∣Zk−1

)

ds
(1)
k−1ds

(2)
k−1 (B.10)

pBA
AB

(

s
(1)
k , s

(2)
k

)

=

∫ ∫

p
(

s
(1)
k

∣
∣
∣s

(2)
k−1

)

p
(

s
(2)
k

∣
∣
∣s

(1)
k−1

)

pBA

(

s
(1)
k−1, s

(2)
k−1

)

× f
({

s
(1)
k−1, s

(2)
k−1

}∣
∣
∣Zk−1

)

ds
(1)
k−1ds

(2)
k−1. (B.11)
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Analogously, we can show that

pBA

(

s
(1)
k , s

(2)
k

)

=
1

f
({

s
(1)
k , s

(2)
k

}∣
∣
∣Zk−1

)

(

pAB
BA

(

s
(1)
k , s

(2)
k

)

+ pBA
BA

(

s
(1)
k , s

(2)
k

))

(B.12)

where

pAB
BA

(

s
(1)
k , s

(2)
k

)

=

∫ ∫

p
(

s
(1)
k

∣
∣
∣s

(2)
k−1

)

p
(

s
(2)
k

∣
∣
∣s

(1)
k−1

)

pAB

(

s
(1)
k−1, s

(2)
k−1

)

× f
({

s
(1)
k−1, s

(2)
k−1

}∣
∣
∣Zk−1

)

ds
(1)
k−1ds

(2)
k−1 (B.13)

pBA
BA

(

s
(1)
k , s

(2)
k

)

=

∫ ∫

p
(

s
(1)
k

∣
∣
∣s

(1)
k−1

)

p
(

s
(2)
k

∣
∣
∣s

(2)
k−1

)

pBA

(

s
(1)
k−1, s

(2)
k−1

)

× f
({

s
(1)
k−1, s

(2)
k−1

}∣
∣
∣Zk−1

)

ds
(1)
k−1ds

(2)
k−1. (B.14)

B.2 Origin of mixed labelling

In multi-target tracking, if NS
0 denotes the single-target location state space (for

instance, R4 if the single-target state corresponds to the position and the veloc-

ity in Cartesian coordinates), given a sufficiently large sequence of measurements

Zk−1, the Belief mass associated with f
({

s
(1)
k−1, s

(2)
k−1

}∣
∣
∣Zk−1

)

will be mostly con-

tained in a small subset of NS
0 , say NS

∗ . Effectively, the double integrals in (B.10),

(B.11), (B.13) and (B.14) are all taken over NS
∗ × NS

∗ , and given good observ-

ability conditions, NS
∗ will be formed by the regions surrounding the true target

states.

But if the targets are moving in close proximity with each other, we will have

s
(1)
k−1 ≈ s

(2)
k−1 for s

(1)
k−1, s

(2)
k−1 ∈ NS

∗ , and hence, within NS
∗ , we will have

p
(

s
(1)
k

∣
∣
∣s

(1)
k−1

)

p
(

s
(2)
k

∣
∣
∣s

(2)
k−1

)

≈ p
(

s
(1)
k

∣
∣
∣s

(2)
k−1

)

p
(

s
(2)
k

∣
∣
∣s

(1)
k−1

)

. (B.15)
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As a consequence, from (B.10), (B.11), (B.13) and (B.14), we have

pAB
AB

(

s
(1)
k , s

(2)
k

)

≈ pAB
BA

(

s
(1)
k , s

(2)
k

)

pBA
AB

(

s
(1)
k , s

(2)
k

)

≈ pBA
BA

(

s
(1)
k , s

(2)
k

)

and from (B.5), (B.12)

pAB

(

s
(1)
k , s

(2)
k

)

≈ pBA

(

s
(1)
k , s

(2)
k

)

(B.16)

i.e. there will be “total mixed labelling” as described in Section 4.3.1. Inter-

estingly, (B.16) will hold regardless of the values of s
(1)
k , s

(2)
k , implying that total

mixed labelling will affect the entire state space of Sk =
{

s
(1)
k , s

(2)
k

}

.

Note that, if the targets are reasonably close to each other, but not that

much given observability conditions, the most likely result will be some degree of

“partial mixed labelling” (as described in Section 4.3.1) instead.

B.3 Persistence of mixed labelling

If “total mixed labelling” (i.e. the situation given by (B.16)) affects the entire

space of Sk, it can be shown that the situation will persist indefinitely, even

after the targets separate from each other. In order to see that, let us suppose

that we are at time k − 1, and we have pAB

(

s
(1)
k−1, s

(2)
k−1

)

≈ pBA

(

s
(1)
k−1, s

(2)
k−1

)

for

s
(1)
k−1, s

(2)
k−1 ∈ NS

∗ .

For the next time step (k), from (B.10), (B.11), (B.13), (B.14) we will have

pAB
AB

(

s
(1)
k , s

(2)
k

)

≈ pBA
BA

(

s
(1)
k , s

(2)
k

)

and pBA
AB

(

s
(1)
k , s

(2)
k

)

≈ pAB
BA

(

s
(1)
k , s

(2)
k

)

, and from

(B.5), (B.12), it is easy to see that (B.16) will hold at time k. As result, total

mixed labelling propagates from time k−1 to time k, regardless of the observation

zk.

If we have instead “partial mixed labelling”, it is possible that mixed labelling

disappears with time. An interesting question, however, is whether partial mixed

labelling may disappear after the targets become well-separated again. To illus-
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trate this situation, let us assume that at time k − 1, we have NS
∗ = Ω(1) ∪ Ω(2),

with Ω(1) ∩ Ω(2) = ∅, which would be the case if the targets are well-separated

and Ω(1),Ω(2) are the regions surrounding each of the true target states.

We also assume that Ω(1) and Ω(2) are small enough such that the probability

(conditioned on Zk−1) that a certain element of Ω(1) corresponds to A and that

a certain element of Ω(2) corresponds to B is more-or-less constant and equal

to Pk−1. Conversely, P ∗
k−1 would be the probability that an element of Ω(2)

corresponds to A and an element of Ω(1) corresponds to B.

Since the targets are well-separated, clearly (B.15) does not hold. Instead, a

more reasonable assumption is that, without loss of generality, for given s
(1)
k , s

(2)
k

p
(
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)
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)
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(B.17)

if s
(1)
k−1 ∈ Ω(2) and s

(2)
k−1 ∈ Ω(1). From (B.10), (B.11), (B.13) and (B.14), we then
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have
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pBA

(
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}∣
∣
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)
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(1)
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Using the probabilities Pk−1 and P ∗
k−1 that we have defined, we obtain

pAB
AB
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s
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k
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∣
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)
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and finally

pAB

(

s
(1)
k , s

(2)
k

)

∝ Pk−1, (B.26)

pBA

(

s
(1)
k , s

(2)
k

)

∝ P ∗
k−1 (B.27)

also regardless of the values of s
(1)
k and s

(2)
k . Therefore, although partial mixed

labelling may disappear with time, this will generally not happen after the targets

are separated enough. Rather, the labelling probabilities will converge to constant

values.

B.4 Mixed labelling and non-kinematic states

It is possible that we have a situation of closely spaced targets, but mixed la-

belling does not arise. This may happen when the location S
(i)
k contains entries

corresponding to non-kinematic quantities, such as the target’s classification, or

the target’s Identification Friend-or-Foe (IFF) code, or the callsign attributed by

the Air Traffic Control. Let N
(i)
k be this non-kinematic quantity. Typically, N

(i)
k

has a very small (or zero) probability of changing between two subsequent time

steps.

As consequence, the condition for the appearance of mixed labelling (B.15)

may only hold if s
(1)
k and s

(2)
k contain the same value of N

(i)
k . If two targets do

not share the same value for N
(i)
k , and we can effectively estimate this quantity

(for instance, when the targets’ callsigns are provided in the observations), then a

pair of locations in a high probability area (say, the unlabelled tracks
{

ŝ
(1)
k , ŝ

(2)
k

}

)

should also contain different values of N
(i)
k . As a consequence, there will be no

mixed labelling associated with
{

ŝ
(1)
k , ŝ

(2)
k

}

.

177



Appendix C

The “one-sided” decoupling

between tracking and labelling in

Bayesian multi-target tracking

In this appendix, we will show that in Bayesian MTTL, the concept of labelling

probabilities allows us to partially decouple the tracking sub-problem (in the sense

of estimating the set of locations) from the labelling sub-problem. Specifically,

the decoupling is “one-sided”: tracking does not depend on the labelling, but

labelling depends on the results of tracking.

C.1 The tracking sub-problem

Consider the mathematical formulation of the Bayesian MTTL problem in Section

4.2. We are going to show that, given some nonrestrictive assumptions, the

tracking sub-problem (i.e. the problem of estimating the set of locations Sk =
{

S
(1)
k , . . . , S

(t)
k

}

from a sequence of observations Zk = (z1, . . . , zk)) is completely

independent from the labelling sub-problem.
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Definition C.1.1 Consider two identical size vectors sk =
[

s
′(1)
k , . . . , s

′(tk)
k

]′

and

lk =
[

l
′(1)
k , . . . , l

′(tk)
k

]′

. The set-composition of vectors sk and lk is defined as

hS(·),L(·)(sk, lk) ,












s
(1)
k

l
(1)
k




 , . . . ,






s
(tk)
k

l
(tk)
k












, (C.1)

i.e. hS(·),L(·) is a special function that maps a pair of vectors to a finite set. Note

that (C.1) preserves the relative order between the elements of both vectors (but

not their absolute order).

Lemma C.1.2 Consider a generic RFS Z. Observe that

p(z||z|) = 1

|z|!P (|Z| = |z|)f(z) (C.2)

the vector z is obtained by (arbitrarily) ordering the set z, and p(z||z|) is a short

notation for p (z ||Z| = |z|). Note that this lemma relates a RFS density, eval-

uated at z, with a family of |z|! (non-RFS) conditional pdfs, each evaluated at

one permutation z of the elements of z. Each permutation z represents the same

physical event as the set z (see Section 2.3.3).

Proof See (4.16).

Lemma C.1.3 For f(xk|Zk) given by (2.71) and given assumption f(zk|xk) =

f(zk|sk) (see (4.4)), we have

f
(
zk
∣
∣sk, Z

k−1
)
= f(zk|sk) (C.3)
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Proof First, using Lemma C.1.2, observe that

p
(
zk
∣
∣sk, Z

k−1, |zk|
)
=

1

Kz

f
(
zk
∣
∣sk, Z

k−1
)
. (C.4)

where the vectors zk and sk are obtained by (arbitrarily) ordering the sets zk and

sk respectively and

Kz = |zk|!P
(
|Zk| = |zk|| sk, Zk−1

)
.

Note that we can replace the set sk by the vector sk in the right side of the

conditional probability, since as we mentioned, they represent the same physical

event. Observe now that

f
(
zk
∣
∣sk, Z

k−1
)
= Kzp

(
zk
∣
∣sk, Z

k−1, |zk|
)

= Kz

∑

lk∈Ωk−1(sk)

p
(
zk
∣
∣sk, lk, Z

k−1, |zk|
)
p
(
lk
∣
∣sk, Z

k−1, |zk|
)

(C.5)

where

Ωk−1(sk) =
{

lk

∣
∣
∣p
(
lk
∣
∣sk, Z

k−1, |zk|
)
> 0
}

. (C.6)

Now, let us consider the pdf

p
(
zk
∣
∣sk, lk, Z

k−1, |zk|
)
=

f
(
zk
∣
∣xk, Z

k−1
)

|zk|!P ( |Zk| = |zk|| sk, lk, Zk−1)
(C.7)

(for xk = hS(·),L(·)(sk, lk)), and let us assume that

P
(
|Zk| = |zk|| sk, lk, Zk−1

)
= P

(
|Zk| = |zk|| sk, Zk−1

)
,

which is a reasonable assumption, given that labels have no physical interpretation
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when considered in a single time step (see Section 4.2.1). The assumption implies

that

p
(
zk
∣
∣sk, lk, Z

k−1, |zk|
)
=

1

Kz

f
(
zk
∣
∣xk, Z

k−1
)

for xk = hS(·),L(·)(sk, lk), and finally, by substituting in (C.5):

f
(
zk
∣
∣sk, Z

k−1
)
=

∑

lk∈Ωk−1(sk)

f
(
zk
∣
∣xk, Z

k−1
)
p
(
lk
∣
∣sk, Z

k−1, |zk|
)

=
∑

lk∈Ωk−1(sk)

f(zk|xk)p
(
lk
∣
∣sk, Z

k−1, |zk|
)

=
∑

lk∈Ωk−1(sk)

f(zk|sk)p
(
lk
∣
∣sk, Z

k−1, |zk|
)

= f(zk|sk). (C.8)

Lemma C.1.4 Consider f(xk|Zk) given by (2.71), and the additional assump-

tion

f(sk|xk−1) = f(sk|sk−1) (C.9)

(which is also reasonable given the discussion in Section 4.2.1). We then have

f
(
sk
∣
∣Zk−1

)
=

∫

f(sk|sk−1)f
(
sk−1

∣
∣Zk−1

)
δsk−1. (C.10)

Proof Given f
(
sk
∣
∣Zk−1

)
, f
(
xk

∣
∣Zk−1

)
and Lemma C.1.2, let us consider the

probability densities

p
(
sk
∣
∣Zk−1, tk

)
=

1

Ks

f
(
sk
∣
∣Zk−1

)
, p

(
xk

∣
∣Zk−1, tk

)
=

1

Ks

f
(
xk

∣
∣Zk−1

)

where sk and xk are obtained by (arbitrarily) ordering sk and xk respectively,
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Ks = tk!P
(
Tk = tk|Zk−1

)
, and tk is the cardinality of sk and xk (which is ob-

viously the same if sk is assumed to be the unlabelled counterpart of xk). This

leads to

f
(
sk
∣
∣Zk−1

)
= Ksp

(
sk
∣
∣Zk−1, tk

)

= Ks

∑

lk∈Ωk−1(sk)

p
(
sk, lk

∣
∣Zk−1, tk

)

=
∑

lk∈Ωk−1(sk)

f
(
xk

∣
∣Zk−1

)

=
∑

lk∈Ωk−1(sk)

∫

f(xk|xk−1)f
(
xk−1

∣
∣Zk−1

)
δxk−1

=

∫
∑

lk∈Ωk−1(sk)

f(xk|xk−1)f
(
xk−1

∣
∣Zk−1

)
δxk−1 (C.11)

where Ωk−1(sk) is defined by (C.6), xk = hS(·),L(·)(sk, lk), and the last line is

obtained non-rigorously as we have not checked the conditions for switching the

summation with the integral.

Now, let us consider the densities

p(sk, lk|xk−1, tk) =
1

Ks|x
f(xk|xk−1),

p(sk|xk−1, tk) =
1

Ks|x
f(sk|xk−1)

where Ks|x = tk!P (Tk = tk|Xk−1 = xk−1). From (C.11), we then have

f
(
sk
∣
∣Zk−1

)
=

∫

Ks|x




∑

lk∈Ωk−1(sk)

p(sk, lk|xk−1, tk)



 f
(
xk−1

∣
∣Zk−1

)
δxk−1

=

∫

Ks|xp(sk|xk−1, tk)f
(
xk−1

∣
∣Zk−1

)
δxk−1

=

∫

f(sk|xk−1)f
(
xk−1

∣
∣Zk−1

)
δxk−1 (C.12)
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and let us then assume, without loss of generality, that each location S
(i)
k is a

continuous random variable, i.e. it assumes values in R
n. By expanding the set

integral in (C.12), we obtain

f
(
sk
∣
∣Zk−1

)
=

∞∑

tk−1=0

1

tk−1!

∫
∑

lk−1∈Ωk−1(sk−1)

f(sk|xk−1)f
(
xk−1

∣
∣Zk−1

)
dsk−1

(C.13)

where xk−1 = hS(·),L(·)(sk−1, lk−1). Applying now assumption (C.9), we have

f
(
sk
∣
∣Zk−1

)
=

∞∑

tk−1=0

1

tk−1!

∫
∑

lk−1∈Ωk−1(sk−1)

f(sk|sk−1)f
(
xk−1

∣
∣Zk−1

)
dsk−1

(C.14)

where sk−1 denotes a finite set whose elements are the entries of vector sk−1. Let

us now consider the probability densities

p
(
sk−1, lk−1

∣
∣Zk−1, tk−1

)
=

1

Ks−1

f
(
xk−1

∣
∣Zk−1

)
,

p
(
sk−1

∣
∣Zk−1, tk−1

)
=

1

Ks−1

f
(
sk−1

∣
∣Zk−1

)

where

Ks−1 = tk−1!P
(
Tk−1 = tk−1|Zk−1

)
.
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From (C.14), we have then

f
(
sk
∣
∣Zk−1

)

=
∞∑

tk−1=0

Ks−1

tk−1!

∫
∑

lk−1∈Ωk−1(sk−1)

f(sk|sk−1)p
(
sk−1, lk−1

∣
∣Zk−1, tk−1

)
dsk−1

=
∞∑

tk−1=0

Ks−1

tk−1!

∫
∑

lk−1∈Ωk−1(sk−1)

f(sk|sk−1)p
(
sk−1

∣
∣Zk−1, tk−1

)

× p
(
lk−1

∣
∣sk−1, Z

k−1, tk−1

)
dsk−1

=
∞∑

tk−1=0

Ks−1

tk−1!

∫

f(sk|sk−1)p
(
sk−1

∣
∣Zk−1, tk−1

)
dsk−1

=
∞∑

tk−1=0

1

tk−1!

∫

f(sk|sk−1)f
(
sk−1

∣
∣Zk−1

)
dsk−1

=

∫

f(sk|sk−1)f
(
sk−1

∣
∣Zk−1

)
δsk−1. (C.15)

Corollary C.1.5 For f(xk|Zk) given by (2.71), plus assumptions f(zk|xk) =

f(zk|sk) and (C.9), (Sk,Zk) consists of a first-order partially observed Markov

process, i.e.

f
(
sk
∣
∣Zk

)
=

f(zk|sk)f
(
sk
∣
∣Zk−1

)

f (zk |Zk−1 )
(C.16)

where

f
(
sk
∣
∣Zk−1

)
=

∫

f(sk|sk−1)f
(
sk−1

∣
∣Zk−1

)
δsk−1. (C.17)

Clearly, the locations-only Bayesian recursion (C.16) does not involve any

probability distribution of labels or labelled multi-target states, and therefore,

we can say that Bayesian tracking does not depend on Bayesian labelling. The

recursion given by (C.16) may be implemented using any multi-target tracking
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algorithm that estimates the entire multi-target posterior (such as the M-SMC

filter, the PHD filter, or the MHT).

C.2 The labelling sub-problem

If we use some algorithm to approximate only f
(
sk
∣
∣Zk

)
, how do we obtain, from

the algorithm’s results, the labelled multi-target density f
(
xk

∣
∣Zk

)
? Observe now

that, from Definition 4.3.1

f
(
xk

∣
∣Zk

)
= pl

(
xk

∣
∣sk, Z

k
)
f
(
sk
∣
∣Zk

)
(C.18)

and therefore, the only extra necessary step is to calculate the labelling proba-

bilities pl
(
xk

∣
∣sk, Z

k
)
. Given property (4.31) and since

f
(
xk−1

∣
∣Zk−1

)
= pl

(
xk−1

∣
∣sk−1, Z

k−1
)
f
(
sk−1

∣
∣Zk−1

)
,

labelling probabilities can be calculated recursively given f
(
sk
∣
∣Zk

)
across dif-

ferent time steps and appropriate initial conditions. In other words, Bayesian

labelling depends on the results of Bayesian tracking.
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Abstract

In estimation problems, accuracy of the estimates of the quantities

of interest cannot be taken for granted. This means that estima-

tion errors are expected, and a good estimation algorithm should be

able not only to compute estimates that are optimal in some sense,

but also provide meaningful measures of uncertainty associated with

those estimates. In some situations, we might also be able to reduce

estimation uncertainty through the use of feedback on observations,

an approach referred to as sensor management.

Characterization of estimation uncertainty, as well as sensor manage-

ment, are certainly difficult tasks for general partially observed pro-

cesses, which might be non-linear, non-Gaussian, and/or have depen-

dent process and observation noises. Sequential Monte Carlo (SMC)

methods, also known as particle filters, are numerical Bayesian estima-

tors which are, in principle, able to handle highly general estimation

problems. However, SMC methods are known to suffer from a phe-

nomenon called degeneracy, or self-resolving, which greatly impairs

their usefulness against certain classes of problems.

One of such classes, that we address in the first part of this the-

sis, is the joint state and parameter estimation problem, where there

are unknown parameters to be estimated together with the time-

varying state. Some SMC variants have been proposed to counter the

degeneracy phenomenon for this problem, but these state-of-the-art

techniques are either non-Bayesian or introduce biases on the system

model, which might not be appropriate if proper characterization of

estimation uncertainty is required. For this type of scenario, we pro-

pose using the Rao-Blackwellized Marginal Particle Filter (RBMPF),



a combination of two SMC algorithm variants: the Rao-Blackwellized

Particle Filter (RBPF) and the Marginal Particle Filter (MPF). We

derive two new versions of the RBMPF: one for models with low di-

mensional parameter vectors, and another for more general models.

We apply the proposed methods to two practical problems: the target

tracking problem of turn rate estimation for a constant turn maneu-

ver, and the econometrics problem of stochastic volatility estimation.

Our proposed methods are shown to be effective solutions, both in

terms of estimation accuracy and statistical consistency, i.e. charac-

terization of estimation uncertainty.

Another problem where standard particle filters suffer from degener-

acy, addressed in the second part of this thesis, is the joint multi-target

tracking and labelling problem. In comparison with the joint state and

parameter estimation problem, this problem poses an additional chal-

lenge, namely, the fact that it has not been properly mathematically

formulated in previous literature. Using Finite Set Statistics (FISST),

we provide a sound theoretical formulation for the problem, and in

order to actually solve the problem, we propose a novel Bayesian al-

gorithm, the Labelling Uncertainty-Aware Particle Filter (LUA-PF)

filter, essentially a combination of the RBMPF and the Multi-target

Sequential Monte Carlo (M-SMC) filter techniques. We show that the

new algorithm achieves significant improvements on both finding the

correct track labelling and providing a meaningful measure of labelling

uncertainty.

In the last part of this thesis, we address the sensor management

problem. Although we apply particle filters to the problem, they are

not the main focus of this part of the work. Instead, we concentrate

on a more fundamental question, namely, which sensor management

criterion should be used in order to obtain the best results in terms of

information gain and/or reduction of uncertainty. In order to answer

this question, we perform an in-depth theoretical and empirical anal-

ysis on two popular sensor management criteria based on information



theory – the Kullback-Leibler and Rényi divergences. On the basis

of this analysis, we are able to either confirm or reject some previous

arguments used as theoretical justification for these two criteria.
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